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Abstract 

Public transport smart cards are widely used around the world. However, while they 

provide information about various aspects of passenger behavior, they have not been 

properly exploited to predict demand. Indeed, traditional methods in economics 

employ linear unbiased estimators that pay little attention to accuracy, which is the 

main problem faced by the sector’s regulators. This paper reports the application of 

various supervised machine learning (SML) techniques to smart card data in order to 

forecast demand, and it compares these outcomes with traditional linear model 

estimates. We conclude that the forecasts obtained from these algorithms are much 

more accurate. 

 

 

Introduction 

The use of smart cards is becoming increasingly popular on public transport services. They 

are especially convenient for users as they reduce their transactional costs and boarding times, 

whereas for bus companies, they enable them to plan their schedules more effectively, 

improve commercial bus speeds, while indirectly they allow them to reduce personnel and 

maintenance costs. But the cards have a further advantage that has yet to be exploited: they 

provide massive amounts of information ranging from tariffs to GPS-generated mobility 

patterns. Such a rich seam of data, if mined properly, should have great policy implications 

for public transportation authorities, sector regulators, transport operators and other 

interested parties, as well as the public in general. 

Many recent studies stress the potential of smart card data as a tool for transport management 

and planning (Utsunomiya et al. 2006; Pelletier et al. 2011). Here, a particularly interesting 

dimension of analysis is that of estimating demand given that smart cards record the 

commuting characteristics of each passenger, including data about travel dates, time of day, 

origin and destination, journey times, etc. Indeed, if transport authorities and regulators could 
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exploit this demand information, they would be able to optimize the transport network as a 

whole.  

To date, few studies have resorted to the use of smart cards for their input data. Those that 

have include Seaborn et al. (2009), Munzinga et al. (2012), Tao et al. (2014), Tao et al. (2016) 

and Haibo et al. (2016). One of the most innovative examples is provided by Arana et al. 

(2014) who analyze smart card data to predict demand. They use multiple linear regression 

analysis to assess the impact of weather conditions on the number of trips taken and the 

underlying motives for these trips.  

However, most analyses in the literature employ linear models, which means they make 

demand predictions using techniques that are better suited for finding causal relationships. 

In this study, our focus is very clearly on methods that enhance prediction capabilities as 

opposed to the assessment of marginal effects on target variables. Moreover, linear models 

fail to take into account the importance of performance in terms of out-of-sample errors. 

Their focus on in-sample data is not an optimal approach to forecasting demand. Here, in 

contrast, we highlight the importance of testing a prediction model with out-of-sample data, 

given that the results of a forecast and the fulfillment of actual events may differ.    

The objectives of this paper can therefore be clearly stated. First, we present various 

supervised machine learning (SML) techniques for predicting public transport demand using 

smart card data. SML techniques train models using historical data in such a way that they 

learn from the patterns that emerge. However, more importantly, machine learning 

techniques are validated with test data so that their real predictive power can be determined. 

Second, we then compare these results to ordinary least squares (OLS) outcomes to 

determine the gain in accuracy achieved with SML techniques.  

In short, we return to the discussion initiated by Kleinberg et al. (2015) and address the 

critical problem in empirical policy research where causal inference is not central or even 

necessary. The question that Kleinberg (2015) raises here is fundamental: what is the best 

technique for making predictions?  

It is our contention that machine learning (ML) techniques are particularly effective in this 

regard. This branch of computer science, which gained popularity in the 1980s, has recently 

been successfully employed in several fields thanks to a number of technological advances. 

These, combined with the development of new, more efficient programming languages, have 

drastically reduced the computational time. We favor the application of ML algorithms over 

more traditional techniques simply because most empirical approaches are not accurate 

enough in their forecasts. We seek to focus our attention more fully on the target variable 

and on the accuracy of the prediction, and not on dependent variables and their causal effect. 

We also strive to obtain better performance in the measurement error. In this sense, 

traditional empirical methods are not optimal, given that they focus solely on unbiasedness. 

OLS, for example, is just one of many possible estimators, and is by definition the best linear 

unbiased estimator. 

It follows, therefore, that ML algorithms are specifically designed for making predictions, 

while OLS models are not. Moreover, ML are able to exploit several data types and 



complexities. But perhaps their main advantage is the fact that computers can be 

programmed to learn from data, revealing previously hidden findings as they discover 

historical relationships and trends. ML techniques can improve the accuracy of predictions 

by removing noise and by taking into account many types of estimation, although not 

necessarily without bias.  Moreover, ML allows for a wide range of data, even when we have 

more predictors than observations, and it admits almost every type of functional form when 

using decision trees, ensuring a large interaction depth between variables. Of course, the 

downside of ML techniques is biased coefficients; however, if our main concern is the 

accuracy of the prediction, then any concerns regarding biased estimators become irrelevant.  

Thus, given that the literature informs us that SML methods are better than traditional 

econometric techniques for predicting demand, our hypothesis is that this should be 

illustrated in transport demand predictions based on data retrieved from smart cards. 

Here, we study the case of the Autonomous City of Buenos Aires (CABA in its Spanish 

acronym), the capital city of Argentina. We analyze the use of the SUBE (Sistema Único de 

Boleto Electrónico), a smart card employed on the city’s public transport services (train, metro 

and bus) since 2009, and which has now been extended for use throughout the country. The 

card (similar in many respects to a credit card) collects multiple details about travelers and 

the journeys they make, and provides information about the location of vehicles using GPS 

and is, therefore, an extremely rich and reliable source of information. 

This paper makes two main contributions to the literature. First, we apply big data techniques 

(that is, ML) to public transport data. These algorithms, of frequent application in other 

areas, when used in the transport sector, show substantial improvements on previous 

forecasts. Second, we show the greater potential of ML techniques for making predictions in 

comparison to those obtained using traditional econometric estimations.  

In short, we present a broad overview of the benefits of the application of SML automated 

tools for exploiting public transport smart card data, and, in so doing, we contribute to the 

discussion on the trade-off between precision and causality, and why this is fundamental for 

empirical predictions.  

 

Case study 

Public transport in CABA is provided in an integrated system that combines urban buses – 

starting and terminating within the city’s limits – with suburban buses – starting (terminating) 

in CABA and terminating (starting) in another district, an incipient underground metro 

network and inter-city trains.   

Figure 1 shows that 80% of all trips are made by bus, with the train operating primarily as a 

feeder from the suburbs, which means it cannot be considered a real competitor. Given, 

therefore, the predominance of the bus as the main public transport service, the analysis we 

undertake herein focuses exclusively on this particular transport mode.  



 

Fig. 1: Domiciliary Mobility Survey (2013) 

Figure 2 shows the routes taken by buses in real time one day in March 2016 at 08:00 a.m. 

On average, there are 1,271 travelers per hour per bus route and, within the analyzed time 

period, there are approximately 32 active bus routes. Each month, an average of 20-30 

million trips are registered.   

 

Fig. 2: Location of CABA 

In general, CABA has a temperate climate, without any extreme temperatures. The city is 

sited on the Río de La Plata, and so humidity levels are quite high (around 70-80%). In 

summer, the average temperature oscillates around 25 ºC and in winter around 10 ºC. Figure 

3 shows that during midsummer rain is abundant.  
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Fig. 3: Weather Conditions in CABA (source INTA) 

 

Data 

4.1 SUBE 

We use data from the SUBE, sorted primarily by bus route and by hour during the period 

that extends from September 2013 to June 2016. It should be borne in mind that the bus 

system has undergone no modifications or developments since 2012, in accordance with 

Ministerial Resolution 422/12. This means that during the period analyzed, the system’s 

supply did not vary in terms of routes, vehicles, frequency of services or quality (all buses 

being identical as they have to respect the technical specifications stipulated under provincial 

law). In addition, use of the SUBE is obligatory for all companies and it is not possible to 

use an alternative form of payment. These facts are significant with regards to potential 

problems of endogeneity, given that we seek to predict demand. Furthermore, note that 

competition between firms operating the system is meaningless because the government 

controls not only their costs but their profits too (as well as defining service quality and 

quantity and fares).  
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4.2 Weather   

All data concerning weather conditions are provided by the nearest climate stations, under 

the management of INTA (National Institute of Agricultural Technology). There are three 

monitoring stations in the study area that report climate data every fifteen minutes. Several 

spectra of variables are available, but we use those of temperature, wind and precipitation so 

that we can compare our outcomes with those of Arana et al. (2014). 

To avoid scale problems with the algorithm that we present below, we normalize the whole 

dataset2. 

 

Methodology and Results 

3.1 OLS Regression 

Given that our main objective is to provide better prediction tools of actual performance, 

we focus our study on accuracy (as opposed to bias). To complete the comparative analysis, 

we take as our starting point the predictive study reported by Arana et al. (2014), which 

undertook a multiple linear regression analysis, using smart card and weather data, to predict 

demand. Here, we also introduce a number of additional considerations not considered in 

Arana et al. (2014), which enriches our estimations considerably.   

The results of the OLS regression taking into account SUBE and weather variables are shown 

in Table 1. 
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Dependant Variable: PAX OLS 

PAX-1 1.3224*** 

 (0.001) 

PAX-2 -0.4887*** 

 (0.001) 

SIZE 0.0631*** 

 (0.00) 

WORKDAY 0.0319*** 

 (0.00) 

FARE -0.0071*** 

 (0.00) 

M01 -0.0075*** 

 (0.00) 

M07 -0.0028*** 

 (0.00) 

PEAK_HOUR 0.1006*** 

 (0.00) 

DAY_HOUR 0.0911*** 

 (0.00) 

STRONG_WIND 0.0021*** 

 (0.00) 

PREC(MM) -0.0077*** 

 (0.00) 

AVG_TEMP -0.0126*** 

 (0.00) 

CONSTANT  0.000  

  (0.00) 

  
No. Observations:  632.944 

R-Squared 0.925 

Adj. R-Squared 0.925 

F-Static 649000 

Robust standard errors in parentheses. *** p<0.01, ** 
p<0.05, * p<0.1  

 

Table 1: OLS Regression 

As can be seen, we obtain similar results to those reported by Arana et al. (2014). In addition, 

we incorporated two one-hour lags and obtained a result of almost 2 on the Durbin-Watson 

test, indicating that there is no autocorrelation. We then proceeded to include several time 

variables, which we deem important for quantifying demand and which are essential to 

ensure a good quality analysis. These variables differentiate peak-hours (07:00, 08:00, 12:00, 

13:00, 17:00 and 18:00), that is, times of day when the mean is higher than 1,000 travelers 

per hour/per bus route, night hours (22:00-06:00, in line with prevailing labor regulations) 

and, all others, as day hours. We also incorporated a variable that differentiates working days 



from non-working days (i.e., Saturdays, Sundays, national holidays). Finally, we added two 

dummies for the months of July and January, when travel patterns differ from those in other 

months due to school holidays and the extreme nature of their temperatures. We 

complemented the above with the one variable that differentiates the bus routes, namely 

SIZE, which computes the number of buses circulating each hour. This allows us to 

differentiate between the sizes of the different bus fleets. All the other characteristics are 

static, which means the supply is fixed and, therefore, we assume there is no endogeneity 

between supply and demand. The last variable we introduced was that of the bus fare, 

although it should be stressed that this barely fluctuated during the period analyzed.  

We then added the three weather variables considered by Arana et al. (2014) with one 

difference. We included as a dummy the notion of STRONG_WIND, that is, a wind with a 

velocity greater than 50 km/hour on the Beaufort scale, as we consider it to be more readily 

interpretable in terms of its explanatory power. 

All the variables present their expected signs and are similar to those reported in Arana et al. 

(2014). More travelers caught buses on working days (as opposed to non-working days), and 

more were recorded at peak-hours and during day hours (as opposed to night hours). The 

size of the fleet presents a positive relation with a larger number of travelers. The fare has a 

negative impact as does rain and mean temperature (the latter might be attributable to the 

fact that while the buses are not fitted with air conditioning, they do have heating). Finally, 

strong wind conditions seem to favor a higher number of passengers. This outcome is 

consistent with the fact that strong winds are more unpredictable than rain, so when they do 

blow people are usually already out on the streets and prefer to escape their effects by 

boarding a bus. 

However, this tells us nothing in terms of demand forecasts; indeed, causality would appear 

not to be directly relevant. Clearly, we would all expect the number of passengers to increase 

on working days and for rain to act as a deterrent to mobility. What bus operators and 

transport regulators need to know is the likely number of passengers at any specific time, 

that is, they need accurate forecasts. In other words, they need answers to such questions as: 

How many passengers will there be if it rains tomorrow? Why, therefore, do studies seek to 

identify the best unbiased estimator? Why should they care about unbiasedness or 

determining whether the central point is variable Y? The smart card is an excellent tool – a 

highly innovative technology – that provides us with daily feedback for use in predictive 

analyses. Smart cards facilitate the construction of an unparalleled base learner that is 

constantly improving itself. Given the availability of these data, the next step is to start using 

algorithms that can exploit this advantage. 

Below, we do just that and provide comparisons of SML techniques – given that we have 

high quality training data – for making demand forecasts. We start by analyzing the MSE, as 

a performance accuracy measure that determines the difference between real and predicted 

values.  

We begin by reporting the MSE of the OLS regression. This provides us with a value of 

0.0711 (and because the variables are normalized, from this juncture, we have to make 

relative comparisons).  



In what follows, we train randomly with two-thirds of the data, while using the remaining 

third as test data3.  

 

3.2 Forward Stepwise Regression 

OLS is a minimization problem of the average squared error (but not zero); however, 

problems of overfitting4 (a discrepancy between the training and test data) may well be found. 

One way to resolve this is to resort to forward stepwise regression. This method seeks to fit 

a subset of attributes by successively incorporating new variables while evaluating the out-

of-sample performance. Those attributes that improve performance can then be maintained 

definitively.  

 

Fig. 4: MSE performance when incorporating different attributes  

In terms of performance, we obtain similar results to those obtained for the OLS (given that 

in essence it is an OLS). This exercise provides us with the base point for the ML methods 

known as penalized linear regressions.  

 

3.3 Penalized Linear Regressions 

Penalized linear regression (PLR) is a method designed to overcome some of the problems 

associated with OLS, basically that of overfitting. They allow degrees of freedom to be 

reduced to fit data and model complexity. They are especially good methods when degrees 

of freedom are tight, although this is not the case here, as we have more than 600,000 

                                                
3 Reducing the data in this way may increase slightly the MSE of the new methods introduced.  
4 We stress the problem of overfitting throughout this paper, given its importance for a good quality prediction 
analysis.  



observations and only 13 variables. Nevertheless, we believe it enriches the study to show all 

the main SML methods.  

We adopt a shrinkage approach in our estimations, that is, we augment the error criteria that 

is being minimized with a data-independent penalty term (or regularization parameter α). 

𝑃(𝛽) is the penalty function and it can take three different common forms, which we present 

below.  

The problem we seek to solve by using α is a problem inherent to all predictions, namely, 

the trade-off between bias and variance (or overfitting). 

 

a) Ridge Regression 

In essence, stepwise regression imposes a restriction so that some elements of vector 𝛽 are 

equal to zero. Ridge regression is similar, but it imposes a restriction to the effect that all 𝛽s 

are greater than zero. Thus, 𝛼𝑃(𝛽) = 𝛼𝛽𝑇𝛽, which is the Euclidean norm of 𝛽. In short, 

we balance the conflict between the squared prediction and the squared values of the 

coefficients.  

In practice, the logic is to generate a family solution for different 𝛼. Every solution is tested 

with the out-of-sample data, and then we only use the solution that minimizes the out-of-

sample error. A widely accepted technique is that of cross-validation5, one that we employ 

throughout this study. 

We obtain an MSE of 0.070728 and an R-squared value of 0.93. Thus, we cannot conclude 

that this is a better technique than that of OLS. 

 

b) Lasso Regression 

Lasso regression uses the absolute as opposed to the Euclidean distance, which allows some 

of the coefficients to be equal to zero. Furthermore, it allows us to establish an order of 

relevance, since when testing alpha, we find some variables that require a greater penalty term 

to be non-zero. Thus, 𝛼𝑃(𝛽) = 𝛼|𝛽|. 

However, here, we obtain a lower value for the regularization parameter, indicating that the 

OLS provides a good approximation. 

c) Elastic Net Regression 

Elastic net regression combines ridge and lasso regression algorithms as shown below: 

                                                
5 The value of alpha is iterated over a range of values and we select the one with the highest cross-validation 
score. 



𝛽0
∗, 𝛽∗ =  𝑎𝑟𝑔𝑚𝑖𝑛𝛽0

∗,𝛽∗ (
1

𝑚
∑(𝑦𝑖 − (𝛽0 + 𝑥𝑖𝛽))2 + 𝜆𝛼𝐿|𝛽| + (1 −

𝑚

𝑖=1

𝜆)𝛼𝑅𝛽𝑇𝛽) 

So that when 𝜆 = 1, it corresponds to a lasso penalization, and when 𝜆 = 0, it corresponds 

to a ridge regression. 

In summary, here, what we seek is a good quality trade-off between bias and variance. If we 

can achieve a greater reduction in variance than the corresponding increase in bias, then we 

can obtain higher precision.  

3.4 Ensemble Methods  

Ensemble methods use a set of algorithms that combine different predictions (base learners) 

and the combination of these results offers better outcomes than those obtained from 

random guessing.  

a) Binary Decision Tree 

We begin with a simple binary tree, where we introduce a minimum sample split (0.5% of 

the sample is recommended) and a minimum sample leaf (we use 0.05%, which gives us a 

good number of terminal node observations) to avoid problems of overfitting. Then, we 

iterate the depth, so as to obtain the minimum MSE value (which is achieved after ten, when 

the model is stabilized because of the minimum sample split and leaf). 

 

Fig. 5:  MSE Performance with Tree Depth in Binary Tree Decision 

 



When applying this simple binary decision tree model – the simplest of the models presented 

– we obtain an MSE of 0.05, that is, a gain in precision of 34% over that provided by the 

OLS model. We discuss the importance of the individual variables at the end of this section.  

b) Bootstrap Aggregation Algorithm (Bagging) 

Bagging uses bootstrap samples from the training data and then trains a base-learner in each 

of these samples. Finally, it takes a simple average of the predictions of the whole model.  

Bagging primarily addresses the variance error, but it does have some issues with bias error. 

This means it needs good depth (given that it is a simple model that generates splitting points 

concentrated in the same place). So we generate good depth (but apply the same criterion on 

splits to avoid overfitting), and try up to 200 tree models.  

 

Fig. 6:  MSE Performance with Bagging 

We record an MSE of 0.045, which represents a 40% better performance than that of OLS. 

c) Random Forest  

Bagging only constructs trees using bootstrap samples of data, whereas random forest (RF) 

also uses a random sample on predictors before each node is split, until the tree conditions 

are fulfilled. This ensures greater independence between trees, because of the combination 

of bootstrap samples and random draws of predictors. Consequently, we can take advantage 

of averaging a large number of trees (and so obtain better levels of variance reduction). 

Similarly, we can gain in terms of bias reduction, because we can employ a very large number 

of predictors (more even than the number of observations), and local feature predictors can 

play a role in tree construction. In our example, however, we make no gain in this way, 

because we focus only on our 12 variables for the models to be comparable. 



In conclusion, this method has all the advantages of bagging combined with a lower 

propensity to overfit (each tree fits, or overfits, a part of the training set, and in the end these 

errors cancel each other out, at least partially), and, as we see below, it is easier to tune than 

gradient boosting (GB). Thus, RF works particularly well with fully grown decision trees (low 

bias, high variance). Moreover, it tackles the error reduction task in the opposite way, that is, 

by reducing variance. In contrast to GB, trees are made uncorrelated to maximize the 

decrease in variance, but RF cannot reduce bias (which is slightly higher than that of a simple 

binary tree). Hence, the need for large unpruned trees, so that the bias is as low as possible 

at the outset. 

In contrast to decision trees, we can reduce the number of observations in the terminal 

nodes, because RF is less likely to overfit. However, we maintain the same splits rule. In 

practice, 500 trees is often a good choice. Finally, we have to set the number of predictors 

sampled, and this is a key tuning parameter that will affect performance. There exist several 

rules, but the most common is 𝑘 = 𝑙𝑜𝑔2(𝑛) + 1 (as recommended by Breiman, 2001) or 

one third of the attributes. 

 

Fig. 7: MSE Performance with Random Forest 

As Figure 7 shows, we obtain better results in terms of MSE. Indeed, the MSE falls to the 

lowest level so far, that is, 0.028. This represents a reduction of more than 60% in the 

prediction error compared to that provided by linear models. Our R-squared value increases 

slightly (0.97) due to the combination of variable subsetting.  

d) Gradient Boosting  

What GB does is to train a set of trees, where every tree is trained on the error of the previous 

ensemble models. GB starts in the same way as bagging, but it focuses on the areas that 

present most mistakes. This gives a better approximation, without the need for greater depth, 

which is an essential advantage. In contrast with RF, GB works well when based on weak 



learners in terms of high bias and low variance (even as small as decision stumps). GB reduces 

the error primarily by reducing bias, and to some extent the variance, by aggregating the 

output from many models.  

In summary, RF trains with a random sample of data in addition to randomizing features. It 

relies on this randomization to give a better generalization performance on out-of-sample 

data. GB, on the other hand, additionally seeks to find the optimal linear combination of 

trees, where the final model is the weighted sum of predictions of individual trees applied to 

the training data.  

We employ the same methodology as above and use minimum split values at leaf and 

terminal nodes using a standard learning rate of 0.01. We show both the training and testing 

errors to ensure there is no problem of overfitting, which is the main concern here. 

 

Fig. 8 MSE Performance with Gradient Boosting 

Figure 8 shows that we obtain even better results than those obtained with the RF model, 

with a total absence of overfitting. This represents a reduction of more than 65% in the 

prediction error compared to that of the linear models. Our R-squared value is unchanged 

from that reported for RF. 

 

3.5 Results Summary  

 

Metrics 
Linear 

Regression 
Forward 
Stepwise 

Ridge Lasso 
Binary 
Tree 

Bagging 
Random 
Forest 

Gradient 
Boosting 

MSE 0.0752 0.0712 0.0707 0.0760 0.0495 0.0455 0.0282 0.0250 

%MSE 
gain 

- -5.3% -5.9% 1.1% -34.2% -39.5% -62.5% -66.8% 

R2 0.9250 0.9292 0.9296 0.9295 0.9502 0.9547 0.9717 0.9747 



 

Table 2: Metric Results 

A comparison of our main results (see Table 2) shows that ensemble methods of supervised 

machine learning provide much better results in terms of error measurement. This means we 

obtain much better precision in our model predictions, which is achieved by eliminating the 

linearity restrictions imposed by traditional methods and by exploiting the potential of tree-

based models. 

 

 

TYPE VARIABLES STEPWISE RIDGE LASSO BAGGING RF GB 

Time 
Variables 

USOS-1 1 1 1 1 1 1 

USOS-2 2 2 2 2 2 2 

WORKDAY 6 6 6 7 7 8 

PEAK_HOUR 4 3 3 3 4 6 

DAY_HOUR 5 4 4 5 6 9 

Weather 
Variables 

AVG_TEMP 7 7 7 6 8 3 

PREC(MM) 9 8 8 9 5 7 

STRONG_WIND 11 12 12 10 12 12 

OTHERS 

SIZE 3 5 5 4 3 4 

M01 10 9 9 12 10 10 

M07 12 11 11 11 11 11 

FARE 8 10 10 8 9 5 

 

Table 3: Importance of Variables  

Table 3 ranks the variables used in the estimations. This ranking is based on how much each 

feature contributes to explaining the error between real and predicted values. As can be seen, 

the importance attached to weather conditions by each model is not comparable to that 

attached to the time variables. When analyzing the linear model, we obtain the marginal 

impact of variables on the target, but we are unable to assess their importance in terms of 

predictive power. However, it is clear that when predicting demand, we first have to take 

into account the time pattern variables. 

 

Conclusions 

We have shown how machine learning algorithms, especially those associated with tree 

regressions, perform better than OLS demand predictions for public transport services.  

While previous studies have exploited smart cards to predict demand, they have typically 

adopted an unbiased orientation to address a problem that is clearly predictive in nature. 



Here, we take an error focus and propose different supervised machine learning algorithms 

for application to the smart card data obtained from the SUBE system employed in 

Argentina. Specifically, we have examined the bus system operating in the Autonomous City 

of Buenos Aires (CABA), thanks to the rich source of information it provides and because 

of the homogeneous behavior presented throughout the period analyzed, and we have tried 

to predict demand at given times throughout the day and on given bus routes. We have 

compared a set of penalized linear regressions and ensemble methods with a traditional linear 

regression model in an effort to identify the method that provides the most accurate 

forecasts.  

Despite the concerns expressed in previous studies about out-of-sample data (which means 

it is unclear how well they perform on new data), we conclude that our predictive 

methodology in general performs 40-65% better than traditional unbiased methods. 

Likewise, we have undertaken a feature analysis to determine which variables have most 

impact on demand predictions. We find that the variables with the greatest impact are not 

those directly related to weather conditions, but rather that time variables are persistently the 

most influential. 

In short, this study provides a number of real tools for regulators, given that the model we 

have constructed performs well in an out-of-sample environment and all they need do is 

reapply it. 
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