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Abstract

Starting from the question: “What is the accident risk of an insured?”, this paper
considers a multivariate approach by taking into account three types of accident risks
and the possible dependence between them. Driven by a real data set, we propose
three trivariate Sarmanov distributions with generalized linear models (GLMs) for
marginals and incorporate various individual characteristics of the policyholders by
means of explanatory variables. Since the data set was collected over a longer time
period (10 years), we also added each individual’s exposure to risk. To estimate
the parameters of the three Sarmanov distributions, we analyze a pseudo-maximum-
likelihood method. Finally, the three models are compared numerically with the
simpler trivariate Negative Binomial GLM.

Keywords: multivariate counting distribution, Sarmanov distribution, Negative
Binomial distribution, Generalized Linear Model, ML estimation algorithm
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1 Introduction

Quantifying the risk of an accident is essential for pricing in insurance markets. Insur-
ers tended to focus on the risk associated with the policy contracted during a certain
period, typically one year in non-life lines. Indeed, various studies adopt this approach
when dealing with pricing in auto insurance lines (see, for example, Abdallah et al., 2016;
Boucher and Inoussa, 2014; Bolancé et al., 2008; Boucher et al., 2007; Bolancé et al.,
2003; Pinquet et al., 2001). However, few papers to date have attempted to analyse the
policyholder’s accident risk from a multivariate perspective. Two examples of the use of
bivariate count data models to tackle pricing in the auto insurance line are provided by
Abdallah et al. (2016) and Bermudez and Karlis (2011), while Shi and Valdez (2014) use
copula-based models to a trivariate analysis in this same line.

Therefore, we seek to address the following question: What is the client’s accident
risk when he has more than one type of coverage from his insurance company? This
question could be answered by using univariate generalized linear models (GLMs), i.e.,
we could estimate one model for each coverage assuming the independent behavior of this
policyholder in relation to each coverage. Alternatively, we can use a multivariate GLM
that allows us to obtain a joint distribution associated with each individual, which also
takes into account the fact that the risks of accident covered by the insurance company are
dependent.

In this paper, we analyze different multivariate models for claims frequencies with
GLMs for marginals, and we propose three multivariate GLMs based on the Sarmanov
distribution, on the grounds that they are better alternatives to the multivariate Negative
Binomial (NB) model. The multivariate models proposed allow us to fit the multivariate
accident rate of the policyholders that have contracted different risk coverages associated
with different policies in distinct non-life lines. Our aim is to capture the relationship
between the behavior of a policyholder as regards the different risk coverages he has
contracted. We show that the approaches based on the Sarmanov distribution allow us
to model the dependence under different assumptions, i.e. we can directly assume that
the dependence exists between the number of claims in each coverage and, alternatively,
we can assume that the dependence exists between the random effects associated with
unobserved factors.

Taking the global perspective of the client of an insurance company, some analy-
ses have attempted to consider the information contained in the different policies of the
same policyholder (representing different insurance coverages) with regards to the policy-
holder’s profitability and loyalty. For example, Guelman and Guillén (2014) analyzed the
price elasticity associated with an insurance contract maximizing the overall profitability
of the policyholder (see also, Guelman et al., 2014). Other analyses have focused on the
policyholder lapse as they study the relationship that exists between the cancellations of
different policies by the same policyholder (see, e.g., Guillén et al., 2012; Brockett et al.,
2008).

To have sufficient multivariate information about the policyholders’ behavior, we need
to observe this behaviour over a long period, i.e., more than one year. Typically, insur-
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ance companies use annual information for pricing in non-life insurance lines. However,
insurance premiums are subject to different adjustments, some of which may be related to
the risk quantification and others to marketing strategies or customer selection. Thus, in-
surers need to analyze portfolio information over several periods and so, here we analyze
10 years of claims information on auto and home lines.

Univariate mixed Poisson GLMs have been widely used in non-life insurance pricing
(see Frees, 2009, Chapter 12, for a review). In this paper, we study three trivariate GLMs
based on the trivariate Sarmanov distribution, and we use them to model trivariate count
data corresponding to frequency of claims in non-life insurance. The first model consists
of the discrete trivariate Sarmanov with NB GLM marginals. The second model is similar
to that proposed by Abdallah et al. (2016) for the bivariate case, although it incorporates
certain modification. Thus, we mix the trivariate model of independent Poisson distribu-
tions with a trivariate Sarmanov distribution with Gamma distributed marginals. In the
third model, we mix a discrete trivariate Sarmanov distribution with Poisson marginals
with three independent Gamma distributions. The main difference between these models
lies in their respective dependence structures. In all three we assume that each poli-
cyholder has a given exposure to risk which can differ for the distinct insurance lines.
Moreover, the expected number of claims associated with the analyzed risks depends on a
set of explanatory variables. In our case, these explanatory variables are related to the cus-
tomer’s characteristics and are the same for each counting variable, but they can change
in function of the analyzed risk.

The maximum likelihood (ML) estimation of all the parameters of a model based
on the trivariate Sarmanov distribution is far from straightforward. It requires adding
different restrictions to the parameters and an optimal solution is not readily found. Al-
ternatively, we analyze a pseudo-maximum-likelihood estimation method based on a con-
ditional likelihood that allows us to estimate all three trivariate models obtained from the
Sarmanov distribution.

We also compare the three Sarmanov’s distributions with the well known alternative
multivariate Poisson GLM mixed with Gamma that is, with the trivariate NB GLM. The
numerical study is conducted on a set of trivariate claims data from auto and home insur-
ance lines, collected over a period of 10 years from a portfolio belonging to an interna-
tional insurance company operating in the Spanish market. In both lines we select claims
at fault linked to civil liability coverage. Moreover, in the case of the auto insurance line
we specifically differentiated two types of claims: only property damage and bodily in-
jury. This distinction has been used previously in other studies focused on the severity
of auto insurance claims (see Bahraoui et al., 2015; Bolancé et al., 2014; Bahraoui et al.,
2014; Bolancé et al., 2008).

The rest of this paper is structured as follows: In Section 2, we review some univari-
ate and trivariate mixed Poisson GLMs and introduce the main notation. In Section 3, we
present the three mixed models which result in three trivariate Sarmanov with NB GLMs
as marginal distributions. We analyse some properties and propose an algorithm for esti-
mating the models based on the specificity of the Sarmanov distribution. In Section 4, we
describe the data and discuss the results of the numerical application. Finally, we draw

3



some conclusions in Section 5.

2 Mixed Poisson distributions

A mixed Poisson distribution is a generalization of the Poisson distribution that can over-
come the restriction that the mean is equal to the variance, a restriction that is inappropri-
ate for most counting random variables. A key property of this distribution is that it can
be easily expressed as a GLM.

A well-known example of the mixed Poisson distribution is the NB distribution, which
mixes the Poisson and Gamma distributions.

2.1 Univariate case

Let N be the random variable (r.v.) total number of a certain type of claims of one insured
for a given period. We assume that N ∼ Poisson(θ), where θ is the realization of a
positive and continuous r.v. Θ having a probability density function (p.d.f.) h; hence, N
follows a mixed Poisson distribution with a probability function (p.f.) given by:

Pr(N = n) =
∫ ∞

0
e−θ θn

n!
h(θ)dθ . (1)

We recall that the expected value, variance and Laplace transform of this distribution are,
respectively:

EN = EΘ,VarN = EΘ+VarΘ, LN (t) = E
(
e−tN)= LΘ

(
1− e−t) , (2)

where LΘ denotes the Laplace transform of Θ.
In the following case, for sake of consistency with the GLMs, we shall consider the

parameterization of the mixed Poisson distribution such that EN = μθ . Moreover, since
in our numerical example we have three different types of claims, we shall index the r.v.
N with the index j denoting the claims type wherever necessary.

2.1.1 Negative Binomial case

This distribution can be obtained by mixing Poisson and Gamma distributions. Hence, for
consistency with the NB GLM, we assume that N ∼ Poisson(μθ), where μ > 0 is a fixed
parameter and θ the realization of a Gamma distributed r.v. with mean 1 and variance
1/α , i.e., Θ ∼ Gamma(α,α) ,α > 0. We easily obtain that:

Pr (N = n) =

∫ ∞

0
e−μθ (μθ)n

n!
h(θ)dθ

=
Γ(α +n)
n!Γ(α)

(
α

α +μ

)α( μ
α +μ

)n

,n ∈ N, (3)
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hence N ∼ NB(α,τ), where τ = α
α+μ . In this case, from the properties of the NB distri-

bution we have that:

EN = μ, VarN = μ +
μ2

α
,

LN (t) = LΘ
(
μ
(
1− e−t))= ( α

α +μ (1− e−t)

)α
, t > ln

α
α +μ

.

2.1.2 Adding exposure and explanatory variables. GLMs

Recall that in the numerical example we have different types of claim; hence, we let Nj

denote the r.v. total number of claims of type j, j = 1, ...,m, where m is the number of
different claim types. At this point, we also introduce subscript i related to individual (i =
1, ..., I). We know that during the period analyzed, the policyholders could have contracted
more than one policy in the same line and, furthermore, that the duration of one contract
could be shorter than that of the period analyzed. This means that the policyholder’s
exposure to risk may differ. Let Ei j be the exposure of individual i in the contracted
coverage j. We define Ei j = 1 if the policyholder has contracted exactly one policy during
the entire period under analysis; otherwise, we obtain Ei j > 1 if the policyholder has
contracted more than one policy and the total duration is longer than that of the period
analyzed and, alternatively, we obtain Ei j < 1 if the total duration is shorter than that of
the period analyzed.

Additionally, we shall now consider the more general situation when the total number
of a certain type of claim, Ni j, depends on certain individual characteristics of the policy-
holder i, i.e., we include explanatory variables (covariates) in GLM form. There are three
components to GLM:

1. A stochastic component, which states that the observed r.v.s Ni j are independent
and distributed in the exponential family.

2. A systematic component, according to which a set of covariates Xi0, ...,Xip, where
Xi0 = 1, ∀i is a constant term, produces a linear predictor with parameters β0 j, ...,βp j

for each observation, i.e., ηi j = ∑p
k=0 Xikβk j.

3. A link function g relating the expected value of the stochastic component to the
systematic component by ηi j = g

(
μi j
)
, where μi j = E(Ni j).

For counting variables, a Poisson GLM is the first choice, in which case the canonical
link function is the logarithmic function, i.e., ηi j = ln

(
μi j
)⇔ μi j = exp

(
ηi j
)
. However,

in practice, the Poisson GLM does not usually provides a good fit because of the overdis-
persion that occurs when the response variance is greater than the mean. Alternatively,
NB GLMs have been developed using the same link function (see McCullagh and Nelder,
1989).
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Negative Binomial GLM with exposure. Such a model can be considered to arise
wen we mix the Poisson distribution with a Gamma(α,α) distribution as in formula (3).
We denote by β0 the intercept coefficient and, in view of the numerical study, we shall also
introduce the exposure (note that the exposure frequently appears in GLMs as weights).

Let Xi = (1,Xi1, ...,Xip)
′ be a column vector with the values of the explanatory vari-

ables of individual i and β j = (β0 j,β1 j, ...,βp j)
′ the parameters vector associated with

the coverage j. We assume the logarithmic link function X′
iβ j = ln(μi j) or, inversely,

μi j = exp(X′
iβ j); moreover, by including exposure Ei j, the individual expected value be-

comes:
E(Ni j) = Ei jμi j = Ei j exp(X′

iβ j).

Therefore, based on formula (3), we obtain for coverage j (hence, with α j denoting the
Gamma parameter) of the ith insured:

Pr
(
Ni j = n

)
=

Γ
(
α j +n

)
n!Γ
(
α j
) ( α j

α j +Ei jμi j

)α j
(

Ei jμi j

α j +Ei jμi j

)n

(4)

=
Γ
(
α j +n

)
n!Γ
(
α j
) αα j

j exp
{

n
(
ln
(
Ei j
)
+X′

iβ j
)}

(
α j + exp

{
ln
(
Ei j
)
+X′

iβ j
})α j+n .

In this case, the likelihood function is:

L
(
α j,β j

)
=

I

∏
i=1

Pr
(
Ni j = ni j

)
=

I

∏
i=1

Γ
(
α j +ni j

)
ni j!Γ

(
α j
) αα j

j exp
{

ni j
(
ln
(
Ei j
)
+X′

iβ j
)}

(
α j + exp

{
ln
(
Ei j
)
+X′

iβ j
})α j+ni j

,

where ni j is the number of observed claims of policyholder i related to coverage j.
Also, the Laplace transform of Ni j becomes:

LNi j (t) =

(
α j

α j +Ei jμi j (1− e−t)

)α j

=

(
α j

α j +(1− e−t)exp
{

ln
(
Ei j
)
+X′

iβ j
}
)α j

.

2.2 Multivariate case

To obtain a multivariate mixed Poisson distribution, we let N j ∼ Poisson
(
μ jθ
)

with μ j >
0 fixed parameters, j = 1, ...,m, and consider θ to be the realization of some positive r.v.
Θ with pdf h. We also assume that, conditionally on Θ = θ , the r.v.s N j are independent.
In the case of the numerical study, in what follows we shall only consider the NB case.

Multivariate Negative Binomial case. Under the assumptions outlined above, let
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Θ ∼ Gamma(α,α) ,α > 0. In this case, the joint probabilities of N = (N1, ...,Nm) are:

Pr(N = n) =
∫ ∞

0
Pr (N = n |Θ = θ )h(θ)dθ

=
αα

Γ(α)

(
m

∏
j=1

μn j
j

n j!

)∫ ∞

0
θ ∑m

j=1 n j+α−1e−θ(∑m
j=1 μ j+α)dθ

=
Γ
(

α +∑m
j=1 n j

)
Γ(α)∏m

j=1 n j!

(
α

α +∑m
k=1 μk

)α m

∏
j=1

(
μ j

α +∑m
k=1 μk

)n j

,n ∈ N
m,

which is the p.f. of the multivariate NB distribution defined as (see, e.g., Johnson et al.,
1997):

NBm

⎛
⎝α;

α
α +∑m

j=1 μ j
,

(
μ j

α +∑m
j=1 μ j

)
j=1,...,m

⎞
⎠ .

For our numerical application, we shall need the trivariate NB distribution (m = 3),
in which we also include the exposure of each individual; i.e., introducing the subscript i
related to the individual, we have that for Ni = (Ni1,Ni2,Ni3) , i = 1, ..., I,

Ni ∼ NB3

⎛
⎝α;

α
α +∑3

k=1 (Eikμik)
,

( (
Ei jμi j

)
α +∑3

k=1 (Eikμik)

)
j=1,2,3

⎞
⎠ . (5)

The correlation coefficient between two marginals for individual i is:

corr
(
Ni j,Nik

)
=

√
Ei jμi jEikμik(

Ei jμi j +α
)
(Eikμik +α)

,1 ≤ j < k ≤ 3. (6)

Let (ni1,ni2,ni3)
I
i=1 be a trivariate data sample with the corresponding exposures (Ei1,Ei2,Ei3)

I
i=1

and we denote μi=(μi1,μi2,μi3) , i = 1, ..., I. Then the likelihood function with exposure
is

L(α,μ1, ...,μn) =
I

∏
i=1

Γ
(

α +∑3
j=1 ni j

)
Γ(α)∏3

j=1 ni j!

(
α

α +∑3
k=1 μikEik

)α 3

∏
j=1

(
μi jEi j

α +∑3
k=1 μikEik

)ni j

.

To estimate the parameters, we shall use the EM method proposed in Ghitany et al. (2012),
which facilitates the ML estimation for multivariate mixed Poisson GLMs.

The classical multivariate NB model in (5) assumes that the dependence is based on
a common random factor Θ, an assumption that implies a lack of flexibility in the depen-
dence structure. Shi and Valdez (2014) considered some alternative multivariate models
based on the NB and copulae that allow for a generalization of the dependence structure.
Alternatively, we shall study a different method for generalizing the dependence structure
by using the Sarmanov distribution.
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3 Models based on the trivariate Sarmanov distribution

3.1 Trivariate Sarmanov distribution

This distribution can be defined in the discrete, as well as in the continuous case. In
general, it is known (see Kotz et al., 2000) that a trivariate random vector Y follows a
continuous trivariate Sarmanov distribution if its joint p.d.f. is given for y ∈ R

3 by:

hSarm (y) =
3

∏
j=1

h j
(
y j
)

×
(

1+ ∑
1≤ j<k≤3

ω jkφ j
(
y j
)

φk (yk)+ω123φ1 (y1)φ2 (y2)φ3 (y3)

)
, (7)

where
(
h j
)3

j=1 are the marginal pdfs,
(
φ j
)3

j=1 are bounded non-constant kernel functions
and ω jk, ω123 are real numbers such that:{ ∫

R
φ j (y)h j (y) = 0, for j = 1,2,3

1+∑1≤i< j≤3 ω jkφ j
(
y j
)

φk (yk)+ω123φ1 (y1)φ2 (y2)φ3 (y3)≥ 0, ∀y ∈ R
3 . (8)

The correlation coefficient between two marginal variables is related to the parameters
ω jk and the kernel functions φ j by:

corr
(
Yj,Yk

)
= ω jk

E
[
Yjφ j

(
Yj
)]
E [Ykφk (Yk)]√

Var
(
Yj
)
Var (Yk)

. (9)

Proposition 1 Concerning the parameter ω123, it holds that:

ω123 =

E

[
3
∏
j=1

(
Yj −EYj

)]

3
∏
j=1

E
[
Yjφ j

(
Yj
)] . (10)

Proof 1 Let j3 = 6− j1 − j2, then we can write:

E

[
3

∏
j=1

(Yj −EYj)

]
=

3

∏
j=1

∫
R

(y j −EYj)hj (y j)dyj

+ ∑
1≤ j1< j2≤3

ω j1 j2

2

∏
k=1

∫
R

φ jk (y jk)(y jk −EYjk)hjk (y jk)dyjk

∫
R

(y j3 −EYj3)hj3 (y j3)dyj3

+ ω123

3

∏
j=1

∫
R

φ j (y j)(y j −EYj)hj (y j)dyj

= ω123

3

∏
j=1

E [Yjφ j (Yj)] ,

which easily yields the result. �
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As for the form of the kernel functions φ j, several alternatives are used in the lit-
erature: for example, the Farlie-Gumbel-Morgenstern (FGM) distribution obtained for
φ j = 1− 2Fj, where Fj is the cumulative distribution function of the marginal Y j. Un-
fortunately, this FGM is restricted by the fact that the correlation coefficient of any two
marginals cannot exceed 1/3 in absolute value; hence, we do not consider it any further
here. Another form of the kernel function is φ j (y) = y−EYj, but this case usually in-
volves truncated marginals to satisfy the conditions (8), which complicates computations.
Therefore, here, we shall consider a third choice, which we call the exponential kernel,
i.e., φ j (y) = e−y −LYj (1).

Since we shall work solely with nonnegative values, this last function φ j (y) = e−y −
LYj (1) will be bounded. Note that it is also decreasing; hence, we denote:

mj = inf
y≥0

φ j (y) = φ j (∞) =−LYj (1) ,

Mj = sup
y≥0

φ j (y) = φ j (0) = 1−LYj (1) , j = 1,2,3.

Then the conditions (8) yield the restrictions:

1+ω jkε jεk ≥ 0,1 ≤ j < k ≤ 3, (11)

1+ ∑
1≤ j<k≤3

ω jkε jεk +ω123ε1ε2ε3 ≥ 0, (12)

where ε j ∈
{

mj,Mj
}
, j = 1,2,3. From these conditions we can deduce bounds for the

parameters ω jk and ω123.
In the discrete case, the joint probabilities of the trivariate Sarmanov distribution are

given for n ∈ N
3 by

PrSarm (N = n) =
3

∏
j=1

Pr
(
Nj = n j

)

×
(

1+ ∑
1≤ j<k≤3

ω jkφ j
(
n j
)

φk (nk)+ω123φ1 (n1)φ2 (n2)φ3 (n3)

)
. (13)

In this paper, we compare three models (see below) based on the trivariate Sarmanov
distribution. All three models have the same marginals, but different kernel functions,
and hence a different dependence structure.

3.2 Model I

For each individual i, we shall consider that Ni follows the discrete trivariate Sarmanov
distribution expressed in (13) with type (4) NB GLM distributed marginals and kernel
functions of exponential type

φi j
(
n j
)
= e−n j −LNi j (1) , j = 1,2,3.
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In the case of this expression, note that when we use GLM marginals in (13), the kernel
functions depend on individual i and, therefore, from conditions (11) and (12), we have to
calculate different bounds of ω jk and ω123 for each i (the ω’s do not depend on individual
i, but their limits do). In practice, we shall need to select the narrowest bounds.

3.3 Model II

We assume that Ni follows a trivariate Poisson distribution with independent marginals,
which is mixed with a trivariate Sarmanov distribution with Gamma marginals, i.e. we
assume that the dependence is given by the unobserved factor Θ j, j = 1,2,3. Our model is
a version of that proposed by Abdallah et al. (2016) for the bivariate case with a different
parametrization. More specifically, we use Gamma(α j,α j) marginals for the Sarmanov
distribution, and we extend the model to the trivariate case. Since we also need to intro-
duce the exposure, the p.f. of the mixed distribution is obtained by solving the following
triple integral:

Pr(Ni = n) =
∫ ∞

0

∫ ∞

0

∫ ∞

0

(
3

∏
j=1

e−Ei jμi jθ j
(Ei jμi jθ j)

nj

n j!

)
hSarm (θ1,θ2,θ3)dθ1dθ2dθ3,

where hSarm is given in (7) with h j the pdf of the mixing marginal r.v. Θ j ∼Gamma
(
α j,α j

)
, j=

1,2,3, and the kernel functions φ j
(
θ j
)
= e−θ j −LΘ j (1). Note that in this model, the

original trivariate Poisson distribution corresponds to the independence case. Then the
resulting p.f. Pr(Ni = n) is also of the Sarmanov type, but with more complex kernel
functions, as can be seen from the following proposition.

Proposition 2 Under the above assumptions, it holds that the mixed distribution of N i

has the p.f.:

Pr(Ni = n) =
3

∏
j=1

Pr(Ni j = nj)

[
1+ ∑

1≤ j1< j2≤3

ω j1 j2

2

∏
k=1

((
α jk +Ei jk μi jk

α jk +Ei jk μi jk +1

)α jk+njk

−
(

α jk

α jk +1

)α jk

)

+ω123

3

∏
j=1

((
α j +Ei jμi j

α j +Ei jμi j +1

)α j+nj

−
(

α j

α j +1

)α j
)]

,

where the marginals Ni j ∼ NB
(
α j,τi j

)
with τi j =

α j
α j+Ei jμi j

, j = 1,2,3.

Proof 2 We have:

Pr (Ni = n) =
∫ ∞

0

∫ ∞

0

∫ ∞

0

(
3

∏
j=1

e−Ei jμi jθ j

(
Ei jμi jθ j

)n j

n j!
h j
(
θ j
))

(14)

×
(

1+ ∑
1≤ j1< j2≤3

ω j1 j2

2

∏
k=1

(
e−θ jk −LΘ jk

(1)
)
+ω123

3

∏
j=1

(
e−θ j −LΘ j (1)

))
.
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Recalling that LΘ j (1) =
(

α j
α j+1

)α j
is the Laplace transform of the Gamma

(
α j,α j

)
dis-

tribution, then we first evaluate:
∫ ∞

0
e−Ei jμi jθ j

(Ei jμi jθ j)
n j

n j!
h j (θ j)

(
e−θ j −LΘ j (1)

)
dθ j

=
∫ ∞

0
e−Ei jμi jθ j

(Ei jμi jθ j)
n j

n j!

αα j
j

Γ(α j)
θ α j−1

j e−α jθ j

[
e−θ j −

(
α j

α j + 1

)α j
]

dθ j

=
αα j

j (Ei jμi j)
n j

Γ(α j)n j!

[∫ ∞

0
θ α j+n j−1

j e−(Ei j μi j+α j+1)θ j dθ j −
(

α j

α j + 1

)α j ∫ ∞

0
θ α j+n j−1

j e−(Ei j μi j+α j)θ j dθ j

]

=
Γ(α j + n j)

Γ(α j)n j!

(
α j

α j +Ei jμi j

)α j
(

Ei jμi j

α j +Ei jμi j

)n j
[(

α j +Ei jμi j

α j +Ei jμi j + 1

)α j+n j

−
(

α j

α j + 1

)α j
]

=
Γ(α j + n j)

Γ(α j)n j!
τα j

i j (1− τi j)
n j

[(
α j +Ei jμi j

α j +Ei jμi j + 1

)α j+n j

−
(

α j

α j + 1

)α j
]
,

where τi j =
α j

α j+Ei jμi j
. Inserting this formula into (14) we obtain the stated form of

Pr (Ni = n), which is also of the Sarmanov type with NB
(
α j,τi j

)
marginals and kernel

functions φi j
(
n j
)
=
(

α j+Ei jμi j
α j+Ei jμi j+1

)α j+n j −
(

α j
α j+1

)α j
(it can be easily shown thatE

[
φi j
(
Ni j
)]

=

0, ∀i, j).

In the following result we present restrictions for the parameters ω jk and ω123.

Proposition 3 Under the assumptions of Model II, the following conditions must be ful-
filled for all i = 1, ..., I :

max
1≤ j<k≤3

{ −1
Mi jMik

,
−1

mjmk

}
≤ ω jk ≤ min

1≤ j<k≤3

{ −1
Mi jmk

,
−1

mjMik

}
,

max
1≤ j<k≤3
h=6− j−k

⎧⎪⎪⎨
⎪⎪⎩

−1
3
∏
l=1

Mil

− ∑
1≤l1<l2≤3
l3=6−l1−l2

ωl1l2

Mil3
,

−1
mjmkMih

− ω jk

Mih
− ω jh

mk
− ωkh

mj

⎫⎪⎪⎬
⎪⎪⎭≤ ω123,

ω123 ≤ min
1≤ j<k≤3
h=6− j−k

⎧⎪⎪⎨
⎪⎪⎩

−1
3
∏
l=1

ml

− ∑
1≤l1<l2≤3
l3=6−l1−l2

ωl1l2

ml3
,

−1
Mi jMikmh

− ω jk

mh
− ω jh

Mik
− ωkh

Mi j

⎫⎪⎪⎬
⎪⎪⎭ ,

where mj = −
(

α j
α j+1

)α j
, Mi j =

(
α j+Ei jμi j

α j+Ei jμi j+1

)α j −
(

α j
α j+1

)α j
, j = 1,2,3, i = 1, ..., I, and,

by convention, ω jk = ωk j.

Proof 3 The kernel function φi j (n) =
(

α j+Ei jμi j
α j+Ei jμi j+1

)α j+n −
(

α j
α j+1

)α j
,n ∈ N, is bounded

and decreasing in n, hence its maximum is Mi j = φi j (0) =
(

α j+Ei jμi j
α j+Ei jμi j+1

)α j −
(

α j
α j+1

)α j
>

11



0 and its infimum is m j = φi j (∞) = −
(

α j
α j+1

)α j
< 0, ∀i = 1, ..., I. Consequently, this

type of kernel (8) also yields the restrictions (11)-(12), and from (11), we easily ob-
tain the stated bounds of ω jk. Regarding ω123, (12) is equivalent to ω123ε1ε2ε3 ≥ −1−
∑1≤ j<k≤3 ω jkε jεk, and by replacing each ε j with the current m j and Mi j, we obtain the
result.

We note that, since the maximum Mi j = φi j (0) depends on the individual expected
value, the intervals for the parameters ω jk and ω123 can differ for each i; hence, in practice,
we need to select the narrowest interval.

3.4 Model III

For this model, we let Ni follow a mixed discrete trivariate Sarmanov distribution with
independent Gamma mixing distributions, i.e.,

Pr (Ni = n) =
∫ ∞

0

∫ ∞

0

∫ ∞

0
PrSarm (Ni = n)

(
3

∏
j=1

h j
(
θ j
))

dθ1dθ2dθ3, (15)

where PrSarm (Ni = n) is the discrete trivariate Sarmanov distribution (13) with Poisson
marginals given by

PrSarm (Ni = n)=

(
3

∏
j=1

e−Ei j μi jθ j
(Ei jμi jθ j)

n j

n j!

)(
1+ ∑

1≤ j1< j2≤3

ω j1 j2φi j1 (n j1)φi j2 (n j2)+ω123

3

∏
j=1

φi j (n j)

)

and with kernel function φi j (n) = e−n−LPo(Ei jμi jθ j) (1) . The mixing distributions h j are

Gamma
(
α j,α j

)
.

As can be seen from the following proposition, the resulting distribution is also of the
Sarmanov type with the same marginals as in Model II, but with different kernel functions.

Proposition 4 Under the above assumptions, the p.f. of the mixed distribution of N i is:

Pr(Ni = n) =
3

∏
i=1

Pr(Ni j = n j)

[
1+ ∑

1≤ j1< j2≤3

ω j1 j2

2

∏
k=1

(
e−n jk −

(
α jk +Ei jk μi jk

α jk +Ei jk μi jk (2− e−1)

)α jk
+n jk

)

+ω123

3

∏
j=1

(
e−n j −

(
α j +Ei jμi j

α j +Ei jμi j (2− e−1)

)α j+n j
)]

,

where, as before, the marginals Ni j ∼ NB
(
α j,τi j

)
with τi j =

α j
α j+Ei jμi j

, j = 1,2,3.

12



Proof 4 Since φi j (n) = e−n− e−Ei jμi jθ j(1−e−1), we obtain

∫ ∞

0
e−Ei j μi jθ j

(Ei jμi jθ j)
n j

n j!
h j (θ j)φi j (n j)dθ j

=

∫ ∞

0
e−Ei j μi jθ j

(Ei jμi jθ j)
n j

n j!

αα j
j

Γ(α j)
θ α j−1

j e−α jθ j

[
e−n j − e−Ei jμi jθ j(1−e−1)

]
dθ j

=
αα j

j (Ei jμi j)
n j

Γ(α j)n j!

∫ ∞

0

[
θ α j+n j−1

j e−(Ei j μi j+α j)θ j e−n j −θ α j+n j−1
j e−(Ei j μi j+α j+Ei j μi j(1−e−1))θ j

]
dθ j

=
Γ(α j + n j)

Γ(α j)n j!

[
e−n j

(
α j

α j +Ei jμi j

)α j
(

Ei jμi j

α j +Ei jμi j

)n j

− αα j
j (Ei jμi j)

n j

(Ei jμi j +α j +Ei jμi j (1− e−1))α j+n j

]

=
Γ(α j + n j)

Γ(α j)n j!
τα j

i j (1− τi j)
n j

[
e−n j −

(
α j +Ei jμi j

α j +Ei jμi j (2− e−1)

)α j+n j
]
.

Inserting this into (15), with some straightforward calculations, we obtain the stated
formula.

The restrictions on the parameters ω jk and ω123 are similar to these given in Proposi-
tion 3 with the maximums:

Mi j = φi j (0) = 1−
(

α j +Ei jμi j

α j +Ei jμi j (2− e−1)

)α j

.

However, in this case, the minimums

mi j = min
n j∈N

{
e−n j −

(
α j +Ei jμi j

α j +Ei jμi j (2− e−1)

)α j+n j
}

also depend on individual i; moreover, they are obtained for some value in N, and not by
letting n j → ∞ as before.

3.5 Estimation procedure for Models I, II and III

Given the restricted shape of the parameters space, it is not easy to estimate all the param-
eters of Model I together. The same holds for the parameters of Model II and Model III.
However, the specific shape of the Sarmanov distribution, which clearly splits into two
parts -the marginal distributions and the dependence structure-, allows for the following
approach:

• First, we estimate the parameters β j, j= 1,2,3, associated with the expected values,

i.e., with μi j = exp(X′
iβ j); the resulting estimations are denoted by β̂ =

(
β̂1, β̂2, β̂3

)
.

• Second, the parameters that define the variance and covariance matrix, i.e. α1, α2,
α3, ω12, ω13, ω13 and ω123 can also be estimated.

13



The parameters β j, j = 1,2,3 are estimated from the marginal distributions, i.e., we
obtain β̂ j, j = 1,2,3 by maximizing the likelihood of the Poisson or NB GLM for each
univariate marginal. If the NB model is the true one, both estimations are unbiased. From
the ML estimations of the univariate NB GLM we also obtain the initial estimated values
α̂0

1 , α̂0
2 , α̂0

3 , which are the starting values of the following iterative algorithm.
To estimate the dependence parameters, we define the following two conditional like-

lihoods: L
(

ω̂ |α̂, β̂
)

and L
(

α̂|ω̂, β̂
)

, where α̂ =(α̂1, α̂2, α̂3) and ω̂ =(ω̂12, ω̂13, ω̂23, ω̂123)

are two vectors with estimated parameters that allows us to obtain an estimation for the
variance and covariance matrix.

The starting values for the dependence parameters, ω̂0 =
(
ω̂0

12, ω̂
0
13, ω̂

0
23, ω̂

0
123

)
, are

obtained by maximizing the first conditional likelihood given β̂ and α̂0 =
(
α̂0

1 , α̂
0
2 , α̂

0
3

)
.

To this end, we need to define the parameters space (i.e., the current restrictions on the
ωs). To do this, we determine the signs of the parameters in ω̂0 and their intervals (note
that this procedure is general for any iteration l in the following procedure). To find the
signs, we use sample estimators based on (9) and (10). Taking these signs into account,
we define variation intervals using Proposition 3. Starting with l = 0, the rest of the
procedure is divided in two steps:

• Step 1 (iteration l) Within the parameter space obtained based on the estimated
signs and intervals (cf. to the procedure described above), find ω̂ l by maximizing

the conditional likelihood L
(

ω̂ l|α̂ l, β̂
)
.

• Step 2 Obtain α̂ l+1 by maximizing the conditional likelihood L
(

α̂ l+1|ω̂ l, β̂
)
.

If in Step 2 we have that L
(

α̂ l+1|ω̂ l, β̂
)
≤ L
(

ω̂ l|α̂ l, β̂
)

, we stop and consider the

solution from the last iteration, Step 1; otherwise, we return to Step 1 for the next iteration.
Once we have estimated the parameters, we can calculate their standard errors using

the approximate Hessian by Richardson’s method implemented in R Software.
By way of alternative, in our algorithm, we also used an approach based on the EM

algorithm proposed in Ghitany et al. (2012) to estimate new values of the β js, j = 1,2,3 in
Step 2 at each iteration. However, the results are practically the same and computational
time did not inprove.

4 Numerical Study

We fitted the models presented above to a data set from a multinational insurance com-
pany. The data come from the Spanish insurance market and consist of a random sample
of 162,019 policyholders who had had one or more auto and home policies during the
decade 2006-2015. We used three dependent variables: the number of claims in auto
insurance at fault involving only property damage (PD); the number of claims in auto in-
surance at fault with bodily injury (BI); and, the number of claims in home (H) insurance
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at fault. In Table 1 we show the claims frequency for each type of risk. For BI the maxi-
mum number of claims reported by a policyholder was six. For PD and H this maximum
value reached 40 and 23, respectively.

In Table 2 we show four different statistics used to measure the dependence between
the number of claims for each risk type. We also show the p−value associated with the
significance test of each statistic. The statistics used were the following: chi−square
(left upper triangle), to test for independence between discrete variables; the Pearson
coefficient (left lower triangle), to test linear dependence; and, the Kendall and Spearman
coefficients (right upper and lower triangles, respectively) to test non-linear dependence.
To calculate the chi−square test statistic, we considered values of the number of claims
from 0 to 6 or more and computed the p−values using the Monte Carlo method (see Hope,
1968).

From Table 2, note that all the statistics indicate that the different types of accident
rate are dependent, with the exception of the Chi-square statistic for BI and H.

Table 1: Claims frequency.

Number of claims 0 1 2 3 4 5 ≥ 6

Auto Property Damage 137437 15650 5247 1946 847 371 521
Auto Bodily Injury 156928 4586 440 50 10 2 3

Home 138694 17206 4125 1268 435 169 122

Table 2: Dependence analysis (p−value).

Chi−Squared Statistics (p−value) Kendall (p-value)
PD BI H PD BI H

PD 42462 (0.0005) 64.731 (0.013) PD 0.395 (0.000) 0.006 (0.010)
BI 0.444 (0.000) 25.261 (0.441) BI 0.403 (0.000) 0.006 (0.009)
H 0.006 (0.003) 0.004 (0.049) H 0.006 (0.010) 0.006 (0.009)

Pearson (p-value) Spearman (p-value)

The explanatory variables (covariates) used are listed in Table 3 with their respec-
tive means and variances. The values of these variables correspond to the latest available
information for each policyholder. Although the models allow different covariates asso-
ciated with each dependent variable to be used, here we opted for the same covariates
for all three dependent variables, choosing them in relation to the policyholders’ char-
acteristics. Among the explanatory variables, we included “Gender” (note that while in
the Spanish insurance market this variable cannot be included to calculate the insurance
premium, it should be considered in the risk analysis). We also delimited three zones as
areas of residence. The first zone consists of the big cities, which in Spain correspond
to Barcelona and Madrid; the second corresponds to the north, given its specific weather;
while the third corresponds to the rest of the country, and is defined as the reference zone.
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Finally, we also included the age of the policyholder and the fact that the policyholder has
contracted policies in other lines (e.g., accident insurance, life insurance, pension plans,
etc.).

Table 3: Explanatory variables in the models (the values correspond to the latest available
information for each policyholder).

Variable Description Mean Variance
X1 Gender of the policyholder: =1 if woman, =0 if man 0.237 0.181
X2 Area of residence: =1 if big city, =0 if other 0.195 0.157
X3 Area of residence: =1 if north, =0 if other 0.291 0.206
X4 Age of policyholder 53.270 172.087
X5 Client has other polices in the same company: =1 if yes, =0 if no 0.220 0.433

Table 4 presents the results for the estimated parameters of the trivariate NB GLM
according to model (5), which includes the dependence between the numbers of claims in
different types of insurance coverages. In Table 4 we have also included the estimated pa-
rameters obtained when fitting three independent univariate NB GLM distributions (i.e.,
the model with independent marginals). Then, in Table 5, we show the results for the
estimated parameters of Models I, II and III, i.e., the three models based on the trivari-
ate Sarmanov distribution. The Akaike information criterion (AIC) indicates that all the
trivariate Sarmanov models improve the trivariate NB GLM model. Moreover, note that
both Models II and III considerably improve Model I and, although the difference is small,
Model II fits better than Model III.

16



Ta
bl

e
4:

E
st

im
at

io
n

re
su

lts
of

th
e

tr
iv

ar
ia

te
N

eg
at

iv
e

B
in

om
ia

lG
L

M
as

su
m

in
g

de
pe

nd
en

ce
(l

ef
t)

an
d

in
de

pe
nd

en
ce

(r
ig

ht
).

D
ep

en
de

nt
M

ar
gi

na
l

D
is

tr
ib

ut
io

ns
In

de
pe

nd
en

t
M

ar
gi

na
lD

is
tr

ib
ut

io
ns

E
st

im
at

ed
Pa

ra
m

et
er

s
St

an
da

rd
E

rr
or

s
E

st
im

at
ed

Pa
ra

m
et

er
s

St
an

da
rd

E
rr

or
s

PD
B

I
H

PD
B

I
H

PD
B

I
H

PD
B

I
H

In
te

rc
ep

t
-1

.2
98

0
-3

.0
07

5
-1

.7
52

4
0.

03
20

(*
**

)
0.

07
11

(*
**

)
0.

03
43

(*
**

)
-1

.3
11

1
-3

.0
21

4
-1

.7
96

0
0.

03
34

(*
**

)
0.

07
14

(*
**

)
0.

03
54

(*
**

)
X

1
-0

.2
76

0
-0

.1
49

3
-0

.1
13

0.
06

97
(*

**
)

0.
16

06
0.

06
68

(*
*)

-0
.2

74
7

-0
.1

45
9

-0
.0

75
8

0.
07

23
(*

**
)

0.
16

02
0.

06
89

X
2

-0
.0

05
7

0.
10

31
-0

.0
30

1
0.

01
71

0.
03

68
(*

**
)

0.
01

74
-0

.0
04

0
0.

09
86

-0
.0

27
5

0.
01

83
0.

03
78

(*
**

)
0.

01
83

(*
)

X
3

-0
.0

21
1

-0
.0

79
7

-0
.1

13
8

0.
01

44
(*

)
0.

03
25

(*
**

)
0.

01
54

(*
)

-0
.0

18
3

-0
.0

88
8

-0
.1

05
6

0.
01

53
0.

03
32

(*
**

)
0.

01
61

(*
**

)
X

4
-0

.0
09

1
-0

.0
13

8
0.

00
17

0.
00

06
(*

**
)

0.
00

13
(*

**
)

0.
00

06
(*

**
)

-0
.0

09
3

-0
.0

13
0

0.
00

16
0.

00
06

(*
**

)
0.

00
13

(*
**

)
0.

00
06

(*
**

)
X

5
0.

02
91

-0
.0

91
7

0.
01

45
0.

00
77

(*
**

)
0.

01
83

(*
**

)
0.

00
87

(*
*)

0.
02

43
-0

.0
68

7
0.

00
58

0.
00

8(
**

*)
0.

01
88

(*
**

)
0.

00
92

X
1
×

X
4

0.
00

11
-0

.0
01

4
0.

00
24

0.
00

13
0.

00
32

0.
00

12
(*

*)
0.

00
10

-0
.0

01
5

0.
00

19
0.

00
14

0.
00

31
43

0.
00

13
(*

)
α
=

0.
61

10
α 1

=
0.

50
60

α 2
=

0.
50

66
α 3

=
0.

46
75

4
A

IC
:3

77
65

4.
3

A
IC

:3
80

18
4.

5
(*

**
)

si
gn

ifi
ca

nt
at

1%
,(

**
)

si
gn

ifi
ca

nt
at

5%
an

d
(*

)
si

gn
ifi

ca
nt

at
10

%
.

17



Ta
bl

e
5:

E
st

im
at

io
n

re
su

lts
of

th
e

th
re

e
m

od
el

s
ba

se
d

on
th

e
Sa

rm
an

ov
di

st
ri

bu
tio

n
w

ith
N

B
G

L
M

fo
r

m
ar

gi
na

ls
.

E
st

im
at

ed
Pa

ra
m

et
er

s
St

an
da

rd
E

rr
or

s
M

od
el

I
M

od
el

II
M

od
el

II
I

β̂ 1
(P

D
)

β̂ 2
(B

I)
β̂ 3

(H
)

PD
B

I
H

PD
B

I
H

PD
B

I
H

In
te

rc
ep

t
-1

.3
11

1
-3

.0
21

4
-1

.7
96

0
0.

03
36

(*
**

)
0.

07
16

(*
**

)
0.

03
56

(*
**

)
0.

03
60

(*
**

)
0.

08
18

(*
**

)
0.

03
58

(*
**

)
0.

03
25

(*
**

)
0.

06
98

(*
**

)
0.

03
55

(*
**

)
X

1
-0

.2
74

7
-0

.1
45

9
-0

.0
75

8
0.

07
23

(*
**

)
0.

16
06

0.
06

93
0.

07
57

(*
**

)
0.

17
82

(*
*)

0.
06

96
0.

07
04

(*
**

)
0.

15
75

0.
06

91
X

2
-0

.0
04

0
0.

09
86

-0
.0

27
5

0.
01

80
0.

03
73

(*
**

)
0.

01
83

(*
)

0.
01

84
0.

04
28

0.
01

84
(*

)
0.

01
74

0.
03

63
(*

**
)

0.
01

82
(*

**
)

X
3

-0
.0

18
3

-0
.0

88
8

-0
.1

05
6

0.
01

51
0.

03
28

(*
**

)
0.

01
62

(*
**

)
0.

01
50

0.
03

75
(*

**
)

0.
01

62
(*

**
)

0.
01

46
0.

03
19

(*
**

)
0.

01
61

(*
**

)
X

4
-0

.0
09

3
-0

.0
13

0
0.

00
16

0.
00

06
(*

**
)

0.
00

13
(*

**
)

0.
00

06
(*

**
)

0.
00

07
(*

**
)

0.
00

15
(*

**
)

0.
00

06
(*

**
)

0.
00

06
(*

**
)

0.
00

13
(*

**
)

0.
00

06
(*

**
)

X
5

0.
02

43
-0

.0
68

7
0.

00
58

0.
00

82
(*

**
)

0.
01

83
(*

**
)

0.
00

92
0.

00
88

(*
**

)
0.

02
16

(*
**

)
0.

00
93

0.
00

78
(*

**
)

0.
01

78
(*

**
)

0.
00

92
X

1
×

X
4

0.
00

10
-0

.0
01

5
0.

00
19

0.
00

14
0.

00
31

0.
00

13
(*

)
0.

00
15

0.
00

35
0.

00
13

(*
)

0.
00

14
0.

00
31

0.
00

13
(*

)
α 1

=
0.

51
22

α 2
=

0.
47

61
α 3

=
0.

47
70

α 1
=

0.
39

95
α 2

=
0.

11
85

α 3
=

0.
45

25
α 1

=
0.

62
77

α 2
=

0.
90

66
α 3

=
0.

47
80

ω
12

=
1.

94
97

,ω
13

=
0.

41
21

,ω
23

=
0.

93
30

ω
12

=
4.

91
53

,ω
13

=
1.

46
24

,ω
23

=
0.

00
00

ω
12

=
6.

82
22

,ω
13

=
0.

81
81

,ω
23

=
1.

24
38

ω
12

3
=

0.
64

89
ω

12
3
=

-1
7.

00
00

ω
12

3
=

0.
18

63
A

IC
:3

75
23

0.
0

A
IC

:3
71

98
7.

4
A

IC
:3

72
41

5.
6

(*
**

)
si

gn
ifi

ca
nt

at
1%

,(
**

)
si

gn
ifi

ca
nt

at
5%

an
d

(*
)

si
gn

ifi
ca

nt
at

10
%

.

18



Note that, for the three Sarmanov models shown in Table 5, the values of the estimated
parameters in the vectors β̂1, β̂2 and β̂3 associated with the covariates are the same, since
they are obtained by ML estimation of univariate marginal NB GLMs. Moreover, these
estimated parameters are very similar to those in the trivariate NB GLM presented in Table
4. The differences between the models are given by the values of parameters associated
with the variance and covariance matrix of Ni = (Ni1,Ni2,Ni3), which changes affecting
the standard errors of the parameters in β̂1, β̂2 and β̂3. The trivariate NB GLMs with
dependent marginals is the model for which most of these standard errors have the lowest
values; consequently, this estimated model tends not to reject the individual significance
of the estimated parameters associated with the explanatory variables.

A further difference between the four multivariate models estimated involves the de-
pendence assumed between the coverages analyzed. Focusing on the Sarmanov models,
we note that the values of the dependence parameters ω jk differ considerably between
models, and that this happens because each model is associated with a different depen-
dency. More precisely, Model I assumes dependence between NB variables, Model II
between Gamma variables and Model III between Poisson variables. To compare the
dependence structures of the models, we calculated the correlation coefficient of each in-
dividual according to formulas (6) (for the trivariate NB model) and (9) (for the Sarmanov
models) and then we calculated the mean of these individual correlations (see Table 6). It
can be seen that the correlations estimated for Model II are the ones most similar to those
observed in the data (see Table 2).

Table 6: Correlations deduced from the four trivariate models estimated.

Model I
PD BI H

PD 0.4562115 0.02477425
BI 0.1102308 0.02502437
H 0.2284269 0.09967611

Trivariate Negative Binomial
Model II

PD BI H
PD 0.5682647 0.02380325
BI 0.827436 0.01684441
H 0.02585861 0.02475868

Model III

Even though Model II provides the best fit, all three models based on the Sarmanov
distribution yield similar results with respect to the significance of the parameters β̂1,
β̂2 and β̂3. These results indicate that the effect of the covariates depends on the type
of coverage. For example, the effect of gender is negative and significant only in the
case of property damage, i.e., women make less claims of this type. Living in big cities

19



positively affects the number of bodily injury claims and negatively affects the number
of home claims; however, living in the north of the country negatively affects both types
of claims. The increasing age negatively affects the number of claims in the auto line
and positively affects thats of claims in the home line. However, the parameter associated
with the interaction of age and gender is significant at 10% only for the home line -the
fact that this parameter is positive indicates that the effect of age is greater in the case of
the women. Finally, the fact of having contracted more products with the same company
only affects the auto line, where this effect is positive for property damage and negative
for bodily injury.

5 Conclusions

In this paper, we have been able to identify the factors that affect each risk type by taking
into account that the risks under analysis are dependent. To do this, we introduced three
trivariate models with the same NB GLM marginals, but different dependence structures
based on the Sarmanov distribution. Thus, where the first model (Model I) is simply a
trivariate Sarmanov distribution with NB GLM marginals, the other two models where
obtained by mixing three independent Poisson distributions with a Sarmanov distribution
with Gamma distributed marginals (Model II) and a Sarmanov with Poisson marginals
with independent Gamma distributions (Model III). These models were considered in
connection with the number of claims made in three types of risks, two associated with
the auto line (property damage and bodily insurance) and one associated with the home
line.

Using a real data set from the Spanish insurance market, we also compared our pro-
posed models with the trivariate NB GLM model and concluded that the two mixing
models based on the Sarmanov distribution (Models II and III) improve the fit.

Moreover, we have proposed an algorithm for estimating the parameters in the Sar-
manov based models. The expected number of claims estimated by each of the four
models is practically the same. The main differences between the models are given by the
values of the parameters associated with the dependence between the claims frequencies
analyzed. These differences affect the risk quantification that depends on the correlation
between the risk factors, and also the inference of the parameters associated with the
covariates.

In conclusion, the mixing models based on the multivariate Sarmanov distribution
add flexibility to the associated matrix of variances and covariances between dependent
variables, resulting in a significant improvement in the fit compared to that obtained by
simpler models including the multivariate NB GLM model and the multivariate discrete
Sarmanov distribution with NB GLM marginals (Model I).
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