NEXT TRAIN TO THE POLYCENTRIC CITY: THE EFFECT OF RAILROADS ON SUBCENTER FORMATION

Miquel-Àngel Garcia-López (IEB, XREAP)
Camille Hemet
Elisabet Viladecans-Marsal (IEB, XREAP)
Next train to the polycentric city:
The effect of railroads on subcenter formation

Miquel-Àngel Garcia-López∗†
*Universitat Autònoma de Barcelona and Institut d’Economia de Barcelona

Camille Hémet∗‡
Ecole Normale Supérieure (PSE) and Institut d’Economia de Barcelona

Elisabet Viladecans-Marsal∗§
*Universitat de Barcelona and Institut d’Economia de Barcelona

April 2016

Abstract: Recent evidence reveals that transportation’s improvements within metropolitan areas have a clear effect on population and job decentralization processes. Yet, very little has been said on how these improvements affect the spatial organization of the economic activity in the suburbs. This paper analyses the effects of transportation’s changes on employment subcenters formation. Using data from metropolitan Paris between 1968 and 2010, we first show that rail network improvements cause the expected job decentralization by attracting jobs to suburban municipalities. Our main contribution is to show that the new rail transit clearly affects the spatial organization of employment through the number and size of the employment subcenters: not only does the presence of a rail station increase the probability of a suburban municipality of belonging to a subcenter by 5 to 10 %, but a 10 % increase in municipality proximity to a suburban station is found to increase its chance to be part of a subcenter by 3 to 5 %.

Key words: urban spatial structure, decentralization, subcenters, polycentric city, transportation
JEL classification: R11, R12, R14, R4, O2

∗We are very grateful to Gilles Duranton for his very helpful comments and advice. Thanks also to Corentin Trevien and Thierry Mayer for their very helpful GIS maps, to Daniel P. McMillen for his R routines to apply his subcenter identification method, and to Diego Puga, Matt Turner, Henry Overman, Jacques Thisse, Jean-Claude Prager, Laurent Gobillon, Ilias Pasidis and seminar and conference participants for their comments and suggestions. Financial support from the Société du Grand Paris, the Ministerio de Ciencia e Innovación (research projects ECO2010-20718 (M.A. Garcia-López), and ECO2010-16934 and ECO2013-41310-R (E. Viladecans-Marsal)), Generalitat de Catalunya (research projects 2014SGR1326 (M.A. Garcia-López) and 2014SGR420 (E. Viladecans-Marsal)), and the “Xarxa de Referència d’R+D+i en Economia Aplicada” is gratefully acknowledged.

†Corresponding author. Department of Applied Economics, Universitat Autònoma de Barcelona, Edifici B, Facultat d’Economia i Empresa, 08193 Cerdanyola del Vallés, Spain (e-mail: miquelangel.garcia@uab.cat; phone: +34 93 581 4584; website: http://gent.uab.cat/miquelangelgarcialopez).

‡Ecole Normale Supérieure (PSE), 48 Boulevard Jourdan, 75014 Paris, France (e-mail: camille.hemet@psemail.eu; phone: +33 (0)1 43 13 62 25; website: http://sites.google.com/site/camillehemet).

§Department of Public Economics, Universitat de Barcelona, Avinguda Diagonal 690, 08034 Barcelona, Spain (e-mail: eviladecans@ub.edu; phone: +34 93 403 4825; website: http://sites.google.com/site/eviladecans).
1. Introduction

Over the past fifty years, the Paris metropolitan area has been undergoing an unprecedented process of employment decentralization, whereby the employment share of the central city (Paris) fell from more than 45% in 1968 to less than a third today. In the meantime, national and regional governments have dedicated huge amount of money to improve public transportation in the area, with particular attention paid to the rail transit network. Suggestive evidence of this investment is provided by the Regional Express Rail (Réseau Express Régional in French, RER henceforth), a new and more efficient regional railway network that started operating in 1975 and represented about 600 kilometers of rails in 2010. The main goal of this paper is thus to investigate the role played by the improvement of rail transit between 1968 and 2010 on Paris’ job decentralization process and in particular on the formation of employment subcenters.

We organize our investigation in three parts. First, we study the effects of transit on the intrametropolitan distribution of employment: Does rail transit foster local employment growth and decentralization in metropolitan Paris? We not only show that there is concentration around transit (employment growth increases with proximity to rail stations), but we also provide evidence that transit actually causes job decentralization (employment growth in central Paris declines with proximity to rail stations).

Second, we analyze the spatial pattern of job decentralization: Is Paris decentralization diffuse or clustered around subcenters? The McMillen’s nonparametric approach (McMillen, 2001) allows us to identify employment subcenters in all six census years. The number of subcenters grew from 21 in 1968 to 35 in 2010, some municipalities emerging as (part of) subcenters over the period while others were dropped out during the process. More importantly, our analysis reveals that employment growth in the subcenters during this period was very intense, both in absolute and relative terms. As a result, it seems clear that the spatial pattern of job decentralization in Paris is reinforcing the polycentric nature of its urban spatial structure.

Finally, we reach to the key question suggested before and our contribution to literature. We investigate the role played by transportation on the emergence of those employment subcenters: Does rail transit cause subcenter formation? Our results show that the answer is ‘yes’: (1) the presence of a rail station increases the probability of a suburban municipality of being (part of a) subcenter by 5%, and (2) a 10% increase in municipality proximity to a suburban station causes about a 3% increase in its probability of being (part of) a subcenter. These results are robust to subcenter size and definition, and we only find that the effects are heterogeneous in terms of the type of rail: the suburban train and the Regional Express Rail (RER). While the effects for suburban train are similar to the average results mentioned above, the effect of the RER are much higher: the presence of a RER station increases the probability of being (part of) a subcenter by 10%, and the corresponding effect of getting 10% closer to a RER station amounts to 5%.

Our investigation contributes to the literature in three ways. As far as we know, we are the first to simultaneously study employment decentralization and subcenter formation in a very long time period. As Duranton and Puga (2015) point out, very little is known about the details
of the spatial patterns of decentralized employment1 and the frontier of knowledge was defined 15 years ago by Glaeser and Kahn (2001) and McMillen and Smith (2003). Using data at the county level for 335 US cities, Glaeser and Kahn (2001) show that job decentralization between 1950 and 1990 was mainly diffuse. On the contrary, McMillen and Smith (2003) use 1990 data at the Transportation Analysis Zone level to identify employment subcenters in 62 US cities and find that they are mainly polycentric2. In our paper, we analyze trends in job decentralization in a non-US city, Paris, and track the emergence of its employment subcenters from 1968 to 2010 using data at a fine spatial scale, the municipality. Our results reveal that the recent spatial pattern of job decentralization in Paris have reinforced its polycentric spatial configuration that was already apparent in 1968.

Second, this paper is the first to empirically study the role played by transportation on subcenter formation and thus the first to provide empirical evidence that supports theoretical models of urban spatial structure. As is well known, transportation plays a crucial role in the spatial distribution of residences and firms within cities. In the classical monocentric city model, transportation (accessibility) is the main factor that determines urban land use (Duranton and Puga, 2015). In nonmonocentric models, the emergence of subcenters (and their number) depends on the interplay between agglomeration economies, transportation and population (Fujita and Ogawa, 1982, Helsley and Sullivan, 1991, Henderson and Mitra, 1996, Henderson and Slade, 1996, Berliant, Peng, and Wang, 2002, Lucas and Rossi-Hansberg, 2002, Anas and Kim, 1996, Berliant and Wang, 2008). From an empirical point of view, McMillen and Smith (2003) are the only ones to explore the connection between transportation and subcenters. Because their work is restricted to 1990, they can only focus on the number of subcenters and not on subcenter formation. Furthermore, since the number of subcenters is arguably determined simultaneously with transportation (and metropolitan population), this paper provides an interesting description of the data but not an estimate of causal effects as noted by Duranton and Puga (2015). In our paper, we study the causal effect of transportation on subcenter formation by using decennial census data from 1968 to 2010 to track transportation improvements and the emergence of subcenters in metropolitan Paris. We follow Duranton and Turner (2012) and address endogeneity concerns relying on Instrumental Variables (IV) techniques with a historical instruments built on the 19th century railroads (1870). Our results confirm this causality.

2Similar results are obtained by Arribas-Bel and Sanz-Gracia (2014) using local indicators of spatial association (LISA) to identify subcenters in 359 MSAs with census tract data for 1990, 2000 and 2010.
Our results indicate that transportation also influences the spatial pattern of decentralized employment by fostering the emergence of employment subcenters.

The paper is organized as follows. Section 2 describes the main features of population, employment and railload changes in the Paris metropolitan area over the past fifty years, and shows that railroad improvements actually caused the observed employment decentralization process. Section 3 explores the pattern of this process, revealing that is has been clustered rather than diffused. Section 4 analyses the influence of railroad transit on the employment subcenters formation and finally Section 5, summarizes and concludes.

2. Does rail transit foster local growth and decentralization?

The main purpose of our paper is to establish whether rail transit causes subcenter formation. Prior to answering this question, we need to assess the role played by rail transportation in employment growth and in the decentralization process in the Paris metropolitan area.

2.1 Growth, decentralization and rail transit in the Paris metropolitan area

This study focuses on the Paris metropolitan area, a French administrative region known as Ile de France. Composed of 1,300 municipalities, it is the densest and most populated metropolitan area in France, with 981 inhabitants per square kilometer in 2010 for a total of 11,786,234 inhabitants. It is also the region with the highest employment density, with a total of 5,668,902 jobs in 2010 (21.6% of French employment). Relying on detailed population and employment data at the municipal level from six census waves (1968, 1975, 1982, 1990, 1999 and 2010), we are able to track the evolution of the urban spatial structure of the Paris metropolitan area over the past forty years. We also use precise transportation data, provided by Mayer and Trévien (2015) and the IAU, to characterize the changes in the area’s public transportation over the period. This data illustrates two features that will be central to our analysis: (1) the Paris metropolitan area is undergoing a process of employment decentralization in which its central city (Paris) loses jobs in favor of suburban locations, and (2) its public transportation infrastructure is based on a rail transit network that has been dramatically improved since the 1960s.

The decentralization process can be illustrated by noting that the number of jobs in the CBD (Paris) declined by 7.1% between 1968 and 2010. Over the same period, while the metropolitan area as a whole grew by about one third, the share jobs located in Paris dropped from 45.3% to 31.7%. This evolution of jobs’ location, which is described more precisely in Appendix A Table A.1, reveals that Paris is decentralizing both in absolute and relative terms. Additional evidence of this decentralization process comes from estimating the traditional monocentric density function for each census year. Using municipal data, we regress the log of employment density on the distance to the center of the CBD (Paris). In order to take nonlinearities into account, our estimations are based on a nonparametric method known as Locally Weighted

3We generally refer to our companion paper Garcia-López, Hémet, and Viladecans-Marsal (2015a) (Section 2) for an extensive description of employment growth patterns and of subcenters’ evolution.
Regression (LWR), with a bandwidth of 0.5 (McMillen, 2001). The LWR density estimates drawn in Figure 1 clearly illustrate the decentralization process between 1968 (blue line) and 2010 (red line). Indeed, between these two dates, employment density in the most central municipalities (0 to 10 km from the CBD) decreased, while it increased in municipalities located between 10 and 60 km from the CBD, in line with a decentralization of jobs from the CBD towards suburban municipalities. We can also note a reduction in employment density for the most peripheral (mostly rural) municipalities (more than 60 km from the CBD). This, combined with the increase observed for the suburban municipalities indicate the emergence of new suburban subcenters (and reinforcement of existing ones).

Figure 1: Employment decentralization in metropolitan Paris, 1968–2010

Note: Density estimates based on LWR with a window size of 0.5.

The second fact we want to emphasize is the recent improvement of rail transit in the Paris metropolitan area. The transportation infrastructure of the Paris metropolitan area today is mostly based on a railroad network made of more than 1,600 km of lines and including four network types, as illustrated in Figure A.1 of Appendix A. First, a suburban train (henceforth train) connecting Paris to the rest of the metropolitan area (suburbs as well as some of the most remote rural municipalities), that underwent substantial improvement over the 1960s. Second, the Paris region is endowed with a regional express network (Réseau Express Régional in French, RER henceforth) which started operating during the second half of the 1970s. Like the train, the RER connects Paris to the suburbs, but for a shorter maximum distance of about 30 km. Most of the RER lines follow the train lines and were designed to improve the existing train network. An important distinction between the train and RER networks is that the latter has connections

4 A window size of 0.5 means that the nearest 50% of observations are weighted.
5 Results are similar when using window sizes of 0.1, 0.3, 0.8 and 1.0 and are available upon request.
within Paris. This means the RER enables passengers to commute from one part of the Paris Metropolitan Area to another, going through Paris, but without having to switch to another train to cross the city. This represents a clear improvement to regional transit overall. As a whole, the RER network increased its number of lines from 1 to 5, its total length from 39 to 587 km, its number of stations from 22 to 243, and its number of municipalities with stations from 16 to 167 between 1975 and 2010. In addition to these regional railroad networks, Paris is characterized by a very dense subway system (métro henceforth), which started in 1900, and is mainly connecting areas within Paris. Between 1968 and 2010, the métro network kept expanding, such that a few métro stations are now located beyond Paris, in the immediate outskirts of the CBD. The city of Paris and its closest suburban area (the first ring of municipalities out of Paris) also enjoy a tramway network. This fourth network is much more recent, dating back from the beginning of the 1990s, and is still expanding.\footnote{Our companion work \cite{garcia2015a} provides a more thorough description of this transportation network.}

Finally, it is important to note that the origins of these rail transit networks can be traced back to the 19th century. In the empirical strategy of the following sections, we exploit this link to correct for the potential biases related to the endogenous location of rail stations and subcenter formation. In particular, we rely on IV techniques with two historical instruments as sources of exogenous variation: the distance to the nearest 1870 railroad line and a dummy variable indicating whether a give municipality was crossed by a railroad line in 1870. In Appendix B we extensively document and discuss the validity of these 1870 rail variables as instruments for the location of modern railroad stations. A very close identification strategy is developed in our companion paper \cite{garcia2015a}, to which we refer for further details.

2.2 Proximity to rail transit and local growth

We can now turn to the main goal of this section: to assess the role played by rail transportation on the job decentralization process that we just identified, and on employment growth more generally. Using the 1968–2010 employment data and the location of railway stations for the 1,300 municipalities of the Paris metropolitan area, we therefore analyze the role of rail transportation on employment growth. To this aim, we estimate a growth function, focusing on the effects of proximity to railway stations by regressing the change in employment density on the distance between the center of the municipality and the nearest station:

\[
\Delta_t \ln(\text{Employment density}) = \beta_0 + \beta_1 \times \ln(\text{distance to the nearest station})_{t-1} \\
+ \beta_2 \times \ln(\text{densities})_{t-1} + \beta_3 \times \ln(\text{distance to CBD}) \\
+ \sum_i (\beta_{4,i} \times \text{geography}_i) + \sum_i (\beta_{5,i} \times \text{history}_i) \\
+ \sum_i (\beta_{6,i} \times \text{socioeconomy}_{i,t-1})
\]

(1)

We control for characteristics related to the initial urban spatial structure of metropolitan Paris such the distance to the CBD, and employment and population densities in year $t-1$.
municipal geography with altitude, index of terrain ruggedness, and elevation range variables. History variables are the population levels between 1962 and year \(t-2 \) and dummy variables for municipalities (1) that were Roman settlements (based on DARMC maps), (2) that were major towns between the 10th and the 15th centuries (based on DARMC maps), and (3) between the 16th and the 19th centuries (based on Bairoch, 1988), and (4) with a monastery built between the 12th and 16th centuries (based on DARMC maps). Socioeconomic variables are computed for year \(t-1 \) and are the unemployment rate, the shares of employment in Manufacturing, in Construction, and in Services, the share of executives and professionals, and the share of population with university degree.

In order to address endogeneity concerns between railroad and employment location, we estimate Eq. (1) by two stage least squares (TSLS) and instrument the distance to the nearest modern railroad station with the distance the nearest 1870 railroad line.

<table>
<thead>
<tr>
<th>Table 1: The effect of rail transit on employment growth and decentralization, TSLS estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent variable:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(\ln(\text{Dist to station})) in year (t-1)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(\ln(\text{Dist to station})) in year (t-1 \times CBD) dummy</td>
</tr>
<tr>
<td>(\ln(\text{Emp density})) in year (t-1)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(\ln(\text{Pop density})) in year (t-1)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>First-stage statistic</td>
</tr>
<tr>
<td>(\ln(\text{Distance to CBD}))</td>
</tr>
<tr>
<td>Geography</td>
</tr>
<tr>
<td>History</td>
</tr>
<tr>
<td>Socioeconomy</td>
</tr>
<tr>
<td>Instrument/s:</td>
</tr>
</tbody>
</table>

Notes: 1300 observations in each regression. Robust standard errors are in parentheses. * indicates significant at 1%, 5%, and 10 percent level, respectively.

The estimated coefficients are displayed in Table 1. In columns 1 and 2, the results for the whole 1968–2010 period show that the further away a municipality was from a station, the more its employment density decreased over the period. To put it differently, these estimates reveal that proximity to rail stations fosters employment growth. Decomposing the total period into two

\(^7\)The Digital Atlas of Roman and Medieval Civilizations (DARMC) is a website with free GIS maps for the Roman and medieval worlds (see darmc.harvard.edu/icb/icb.do).
subperiods (columns 3 and 4) shows that this concentration around transit is observable both at the beginning and at the end of the period, but is more marked in the early years of the period (1968 to 1990), corresponding to the first and main improvements of the railway network.

Evidence of the decentralization process described in the previous subsection is presented in columns 5 to 7, in which the regressions control for the interaction between the distance to the closest railway station and a dummy variable indicating the CBD. The coefficients for this interaction term reveal that conditional on belonging to the CBD (the 20 arrondissements of Paris), getting closer to rail station tends to reduce employment over time, a clear sign of job decentralization.

Finally, we can note that the estimated coefficients for proximity to rail stations remain stable when we control for the proximity to highway ramps, as reported in Appendix D. These regressions also show that the distance to the closest highway ramp does not relate to employment growth.

3. Is Paris decentralization diffuse or clustered around subcenters?

After establishing that the Paris metropolitan area went through a job decentralization process related to the improvement of the railway transportation network, we now want to characterize the spatial pattern of this process: Does decentralization follow a polycentric spatial pattern, reinforcing existing secondary centers (subcenters) and/or fostering the emergence of new ones? Or does it rather reflect a dispersed spatial pattern, in which suburban land is occupied by low-density settlements? To answer these questions, we first identify subcenters for each census year between 1968 and 2010 before analyzing the evolution of employment inside these subcenters versus noncentral locations between 1968 and 2010.

3.1 Identifying and characterizing subcenters

An employment subcenter is a place with a significantly larger employment density than nearby locations that has a significant effect on the overall spatial distribution of jobs. We identify employment subcenters using the method first developed by McDonald and Prather (1994) and improved by McMillen (2001). The main idea is to estimate densities following a monocentric spatial pattern. The predicted densities obtained are then subtracted from the corresponding real densities. The positive and statistically significant residuals are finally selected.

While McDonald and Prather (1994) estimate by OLS a two dimensional density function (log of employment density on the distance to CBD), as in Figure 1, McMillen (2001) suggests estimating a three-dimensional density function (log of employment density on north-south and east-west distances to CBD) with a Locally Weighted Regression (LWR). Both improvements allow to take into account geographical differences, which, in terms of the spatial pattern of densities, can occur in any direction from the CBD (e.g. steeper density gradients on the north side than on the south side of the city). They additionally allow to define any type of monocentric spatial pattern: concave, convex or linear.
We therefore estimate the following employment density function:

\[
\ln(\text{Employment density}) = \gamma_0 + \gamma_1 \times \text{north-south distance to CBD} \\
+ \gamma_2 \times \text{east-west distance to CBD}
\] (2)

where density is measured as jobs per hectare, and distances are in kilometers. The CBD is defined as the 20 **arrondissements** that make up the city of Paris. Distance to CBD is the distance to the centroid of the 4th **arrondissement** (corresponding to the town-hall of Paris).

Since our estimates are based on LWR, we need to define a bandwidth. As McMillen (2001) points out, this is a critical choice because we need a monocentric benchmark. We experiment with alternative window sizes ranging from 1% to 9% and from 10% to 90% (see Table C.1 in Appendix C). After visual inspection, we find that the first monocentric spatial structure appears when the nearest 50% observations are included in each local regression. Interestingly, this is the value used by McMillen (2001) for some US cities. We also experimented with a selection rule based on the Akaike information criterion. However, the selected window size (7%) was clearly related to a polycentric spatial structure (see and compare Tables C.1 and C.2 in Appendix C).

Second, for each site we compute the residual as the difference between the log of real employment density and the estimated log of employment density. We then select those that are significantly positive, according to their own standard errors that can vary over space (McMillen, 2001). We use two critical thresholds, 1.96 and 1.64, that are associated with a 5% and a 10% significance level, respectively.

Finally, we group the selected sites in subcenters when they are contiguous. We use a "queen" criterion for contiguity: two sites (municipalities) are contiguous if they share at least one point in their boundaries. See McMillen (2001, 2003) and Garcia-López (2010) for further details on this procedure.

This methodology enables us to identify subcenters for each census year between 1968 and 2010, which are described in Table 2. For each year, we report two figures, corresponding to subcenters identified using positive residuals significant at the 5 and at the 10% level, respectively. From Panel A, we can see that the number of subcenters identified at the 5% level (respectively, at the 10% level) increased from 20 to 26 (respectively from 21 to 35) between 1968 and 2010. Panel B reveals that these subcenters hosted 1,756,000 jobs in 2010 (respectively 1,979,000), corresponding to an increase of about 600,000 jobs since 1968 (respectively 560,000). We can also observe that subcenters are heterogeneous in terms of size, with an increasing number of large subcenters (more than 20,000 jobs), in line with the decentralization process: in 1968, between 15% and 20% of subcenters hosted more than 20,000 jobs, contrasting with a range of 42% to 50% in 2010. Finally, we want to emphasize that the number of subcenters and the number of jobs in the subcenters do not differ much whether the subcenters are identified using positive residuals at the 5% level or at the 10% level. We will henceforth use the subcenters identified at the 10% level in our analysis.
Table 2: Employment subcenters in metropolitan Paris, 1968–2010

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Resid. significant at:</td>
<td>5%</td>
<td>10%</td>
<td>5%</td>
<td>10%</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>Panel A: Number of subcenters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All subcenters</td>
<td>20</td>
<td>21</td>
<td>26</td>
<td>27</td>
<td>30</td>
<td>32</td>
</tr>
<tr>
<td>≥ 10,000 jobs</td>
<td>7</td>
<td>8</td>
<td>13</td>
<td>14</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>≥ 20,000 jobs</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>Panel B: Jobs (’000) in subcenters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All subcenters</td>
<td>1,152</td>
<td>1,419</td>
<td>1,319</td>
<td>1,667</td>
<td>1,237</td>
<td>1,665</td>
</tr>
<tr>
<td>≥ 10,000 jobs</td>
<td>1,088</td>
<td>1,350</td>
<td>1,254</td>
<td>1,601</td>
<td>1,169</td>
<td>1,582</td>
</tr>
<tr>
<td>≥ 20,000 jobs</td>
<td>1,022</td>
<td>1,290</td>
<td>1,184</td>
<td>1,501</td>
<td>1,040</td>
<td>1,513</td>
</tr>
</tbody>
</table>

Note: LWR estimates use a window size of 0.5 (i.e., the nearest of the 50% observations).

Table 3: Municipalities in employment subcenters in metropolitan Paris, 1968–2010

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: All subcenters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All municipalities</td>
<td>88</td>
<td>97</td>
<td>93</td>
<td>95</td>
<td>95</td>
<td>89</td>
</tr>
<tr>
<td>Emerging as (part of) subcenters</td>
<td>–</td>
<td>18</td>
<td>7</td>
<td>11</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>Disappearing as (part of) subcenters</td>
<td>–</td>
<td>9</td>
<td>11</td>
<td>9</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>Always in subcenters</td>
<td>57</td>
<td>57</td>
<td>57</td>
<td>57</td>
<td>57</td>
<td>57</td>
</tr>
<tr>
<td>Panel B: Subcenters ≥ 10,000 jobs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All municipalities</td>
<td>73</td>
<td>81</td>
<td>75</td>
<td>80</td>
<td>78</td>
<td>76</td>
</tr>
<tr>
<td>Always in subcenters</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>Panel C: Subcenters ≥ 20,000 jobs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All municipalities</td>
<td>67</td>
<td>73</td>
<td>69</td>
<td>68</td>
<td>69</td>
<td>65</td>
</tr>
<tr>
<td>Always in subcenters</td>
<td>38</td>
<td>38</td>
<td>38</td>
<td>38</td>
<td>38</td>
<td>38</td>
</tr>
</tbody>
</table>

Note: Employment subcenters identified using McMillen (2001)’s method with a LWR window size of 50%, and for positive residuals significant at the 10% level.
3.2 The spatial pattern of decentralization

In order to determine the spatial pattern of employment decentralization, we now compare the evolution of employment inside and outside these subcenters over the period of interest.

Table 4 displays the number of jobs in each type of area (e.g. subcenter versus non-central) for all census years (columns 1 to 6), and the corresponding variation between 1968 and 2010 (column 7). In the non-constant geography panel (Panel A), the figures correspond to all subcenters and all non-central locations identified at a given date, some of them having appeared or disappeared as subcenters since the previous wave. In other words, the geography is not constant in the sense that the municipalities included in the Subcenters category (or, by symmetry, in the Non-central category) differ between two points in time. By contrast, the figures reported in the constant geography panel (Panel B) correspond to geographical zones that are fixed over time according to various criteria. Here, the geography is constant in the sense that the municipalities included in each type of zone considered are the same at each point in time. For instance, the Always subcenters category includes the 57 municipalities that are identified as a subcenters (or part of one) in all six years, while the Always non-central group refers to municipalities that were not identified as (part of) a subcenter in any year. Similarly, the 35 municipalities identified as (part of) a subcenter in 2010 are included in the Subcenters in 2010 group for all years, even if they may not have been (part of) a subcenter before 2010, while the remaining 1,265 municipalities go under the Non-central in 2010 label. Finally, 1968 Non-central to subcenters refers to municipalities that were non-central in 1968 and, at some point, became (part of) a subcenter and remained as such until 2010, while municipalities that were (part of) a subcenter in 1968 and, at some point, lost this status up to 2010 are labeled as 1968 Subcenters to non-central.

Table 4: The spatial pattern of decentralized employment in metropolitan Paris, 1968–2010

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Non-constant geography</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subcenters</td>
<td>1,419</td>
<td>1,667</td>
<td>1,665</td>
<td>1,788</td>
<td>1,782</td>
<td>1,979</td>
<td>560 (39.5%)</td>
</tr>
<tr>
<td>MA share</td>
<td>33.2%</td>
<td>35.7%</td>
<td>35.4%</td>
<td>35.2%</td>
<td>35.3%</td>
<td>34.9%</td>
<td></td>
</tr>
<tr>
<td>Non-central</td>
<td>992</td>
<td>1,090</td>
<td>1,232</td>
<td>1,472</td>
<td>1,659</td>
<td>1,893</td>
<td>901 (90.8%)</td>
</tr>
<tr>
<td>MA share</td>
<td>21.6%</td>
<td>23.3%</td>
<td>26.2%</td>
<td>29.1%</td>
<td>32.9%</td>
<td>33.4%</td>
<td></td>
</tr>
<tr>
<td>Panel B: Constant geography</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Always subcenters</td>
<td>1,028</td>
<td>1,136</td>
<td>1,112</td>
<td>1,168</td>
<td>1,183</td>
<td>1,372</td>
<td>344 (33.5%)</td>
</tr>
<tr>
<td>Always non-central</td>
<td>754</td>
<td>880</td>
<td>961</td>
<td>1,136</td>
<td>1,260</td>
<td>1,383</td>
<td>629 (83.4%)</td>
</tr>
<tr>
<td>Subcenters in 2010 (not all years)</td>
<td>104</td>
<td>221</td>
<td>316</td>
<td>438</td>
<td>506</td>
<td>606</td>
<td>502 (482.7%)</td>
</tr>
<tr>
<td>1968 Non-central to subcenters</td>
<td>63</td>
<td>176</td>
<td>267</td>
<td>381</td>
<td>450</td>
<td>537</td>
<td>474 (752.4%)</td>
</tr>
<tr>
<td>Non-central in 2010 (not all years)</td>
<td>455</td>
<td>518</td>
<td>508</td>
<td>519</td>
<td>493</td>
<td>510</td>
<td>55 (12.1%)</td>
</tr>
<tr>
<td>1968 Subcenters to non-central</td>
<td>359</td>
<td>374</td>
<td>348</td>
<td>347</td>
<td>330</td>
<td>342</td>
<td>-17 (-4.7%)</td>
</tr>
</tbody>
</table>

Note: Employment values are thousands of jobs. Growth rates are in parentheses. Employment subcenters identified using McMillen (2001)’s method with a LWR window size of 50%, and for positive residuals significant at a 10% level.
The figures reported in Table 4 reveal several interesting characteristics of the decentralization process. We can see from the non-constant geography panel (Panel A) that subcenters always concentrate around a third of all jobs in the Paris metropolitan area. Non-central municipalities represented around one fifth of all jobs in the metropolitan area in 1968, but up to one third in 2010 (while they include roughly 1,200 municipalities out of the 1,300 under study). Since the municipalities included in a given category vary from one year to another, it is however difficult to compare the employment shares at different dates and to appreciate the increase in employment share for non-central municipalities in this panel.

For this reason, we now turn to the figures of the constant geography panel (Panel B). We can first note that the number of jobs located in the 57 municipalities that are always identified as (part of) a subcenter has increased over time, from 1,028 thousands in 1968 to 1,372 thousands in 2010, which corresponds to a growth rate of 33.5% (column 7). The increase in the number of jobs in always non-central municipalities is even more striking: this subset of municipalities saw its number of jobs grow by 83.4% over the period, with 629 thousands additional jobs. Although this increase in the number of jobs is almost twice as large as the one experienced by always subcenters municipalities, we must bear in mind that the latter represent less than 5% of municipalities. We can also observe that the magnitude of employment growth in 2010 subcenters and in 1968 noncentral to subcenters is very large, both in absolute and relative terms.

4. Does rail transit cause subcenter formation?

After analyzing the job decentralization process in the Paris metropolitan area, we now turn to the most important part of this paper, where we contribute to the literature by establishing that rail transit causes subcenter formation. To answer to this key question, we proceed in two steps. We first investigate whether the existence of a rail station in a suburban municipality increases the probability that this municipality becomes (part of) a subcenter. Then, we examine whether proximity to rail stations also increases the likelihood of becoming (part of) a subcenter, even when the station is not built on the municipal ground.

In both steps, our empirical strategy consists in regressing the probability that a municipality becomes a subcenter on a rail station variable. In section 4.1, where we explore the role of the existence of a rail station, this variable indicates whether there is a station within the administrative boundaries of the municipality or the number of stations and lines in the municipality. Alternatively, in section 4.2, this variable measures the distance between a municipality and the closest station. All regressions include controls for the characteristics related to Paris urban spatial structure (geography, history, and socio-economic variables) that were used in Equation (1). The general equation, that will be estimated using probits, can thus be expressed as follows:
\[
\text{Prob(subcenter)}_t = \beta_0 + \delta_1 \times \text{Rail station variable}_t \\
+ \delta_2 \times \ln(\text{densities})_t + \delta_3 \times \ln(\text{distance to CBD}) \\
+ \sum_i (\delta_{4,i} \times \text{geography}_i) + \sum_i (\delta_{5,i} \times \text{history}_i) \\
+ \sum_i (\delta_{6,i} \times \text{socioeconomy}_i, t)
\] (3)

In order to correct for the potential biases related to the endogenous location of rail stations, we use the distance to the nearest 1870 railroad line (Section 4.1) and a dummy variable indicating whether a given municipality was crossed by a rail (a train line) in 1870 (Section 4.2) as instruments, as explained in Section 2 and documented and discussed in Appendix B. However, the use of these historical instruments comes with a caveat: since they are time invariant, we cannot estimate using panel data techniques. As a result, we pool all observations together, irrespective of the year, and include year fixed effects in our regressions. As a robustness, we also run some cross-sectional regressions.

4.1 Do rail stations lead to subcenters?

In order to establish whether the existence of a rail station in a suburban municipality increases the probability that this municipality becomes (part of) a subcenter, we estimate Eq. (3) using the subsample of the 1,280 suburban municipalities (excluding the 20 arrondissements of Paris).

The marginal effects of the corresponding (second-stage) results are displayed in Table 5. Columns 1 to 7 present results estimated on the full subsample of all suburban municipalities. In columns 1 and 2, the station variable represents the number of lines times station, which counts the total number of lines having a stop in a municipality (it can be seen as a weighted count of the number of stations). The station variable then simply counts the number of stations in columns 3 and 4, and indicates the existence of a station in columns 5 to 7.\(^8\) We will restrict our comments on the specifications that control for the geographical and historical characteristics, after noting that the marginal effects are significantly reduced in the conditional regressions.

Column 4 indicates that an additional station increases the probability that the municipality becomes (part of) a subcenter by 2.8%. This effect is exactly the same as that of having an additional line stopping in the municipality (column 2). This does not come as a surprise given that most of the suburban municipalities are only crossed by one train line, so that the number of lines-stations is actually very close to the number of stations.

Regarding the existence of a station, we estimate a slightly larger effect, around 4% over the whole period (column 6). This difference in magnitude can be interpreted as saying that what matters the most in explaining subcenter formation is the mere existence of a train station, not the number of stations. This effect increases to 4.7% when we focus on the 1975-2010 period (column 7),

\(^8\)Therefore, if a municipality has two stations, with \(n_1\) lines stopping in one station and \(n_2\) lines in the other one, the “number of lines-stations” variable takes a value of \(n_1 + n_2\), the “number of stations” variable takes a value of 2, and the dummy variable is equal to 1.
suggesting either that the effect is delayed in time, or that the transportation system built after 1975 (mostly the RER) explains a larger part of the overall effect.

In order to dig further into this time variation, we focus on the 1975-2010 period in columns 8 to 10, taking the municipalities systematically identified as subcenters out of the sample. The estimated effect over the period jumps to 5.3% (column 8) confirming the idea of an reinforced effect in the most recent period (the effect goes from 3.5% in 1975 to 7.5% in 2010 (columns 9 and 10), but the difference is not significant).

We check the robustness of our results in Appendix E. In Table E.1 Panel A we show that estimates are robust to subcenter size and definition: the effect is always between 3.5% and 4.4%, whether we focus on municipalities of more or less than 50,000 inhabitants (columns 1 and 2), and whether we rely on subcenters identified using the 5% criterion (columns 3 and 4) (instead of 10% in the main results). In Table E.2 Panel A we test the validity of our identification strategy by dropping some observations of municipalities. Since the 1870 railroad network was probably planned to serve the most important municipalities during the 19th centuries, we first drop municipalities that were important. We do not have population data at the municipality level for these years, as a result we use our historical dummy variables that signal the most important towns through history. That is, we drop municipalities that were Roman settlements and/or major towns during the 10th and 19th centuries and/or with a monastery built between the 12th and 16th centuries (columns 1 and 2). Alternatively, we also drop observations of municipalities with a rail station built during the 19th century (columns 3 adn 4). In both cases, results still show a significant and positive effect of having a rail station on the probability of becoming (part of) a subcenter.

Table 5: The effect of rail stations on subcenter formation, IV Probit - Marginal effects

<table>
<thead>
<tr>
<th>Dependent var.:</th>
<th>Probability of being (part of) a subcenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable type:</td>
<td>All suburban municipalities</td>
</tr>
<tr>
<td>Period/year:</td>
<td>Number of lines-stations</td>
</tr>
<tr>
<td>19th centuries</td>
<td>68-10</td>
</tr>
<tr>
<td>20th century</td>
<td>68-10</td>
</tr>
<tr>
<td>Station variable</td>
<td>0.087<sup>a</sup> (0.024)</td>
</tr>
<tr>
<td>F-S statistic</td>
<td>73.24</td>
</tr>
<tr>
<td>ln(Densities)</td>
<td>N</td>
</tr>
<tr>
<td>ln(Dist to CBD)</td>
<td>N</td>
</tr>
<tr>
<td>Geography</td>
<td>N</td>
</tr>
<tr>
<td>History</td>
<td>N</td>
</tr>
<tr>
<td>Socioeconomy</td>
<td>N</td>
</tr>
<tr>
<td>Observations</td>
<td>7680</td>
</tr>
<tr>
<td>(1280 suburban municipalities × 6 census years)</td>
<td>(1280×5)</td>
</tr>
<tr>
<td>Instrument:</td>
<td>Dummy=1 if municipality is crossed by a 1870 rail</td>
</tr>
</tbody>
</table>

Notes: Regressions in columns 1 to 8 include year effects. Robust standard errors and are in parentheses (and are clustered by municipality in regressions in columns 1 to 8).
^a,
^b, and
^c indicates significant at 1, 5, and 10 percent level, respectively.
We now refine our results by investigating the train station effect, looking alternatively at two different train types: suburban trains versus RER. The corresponding results are displayed in columns 1 to 4 of Table 6 for the former train type, and in columns 5 to 8 for the latter. Over the 1968-2010 period, we estimate that the presence of a suburban train station in a municipality increases the likelihood that it becomes a subcenter by 3.4% (column 2). As before, this effect slightly increases (to 3.9%) when we focus on the 1975-2010 period (column 3), and goes up to 4.4% once we exclude municipalities that are always identified as a subcenter (column 4). These figures are of the same order of magnitude, although slightly lower than the estimates obtained for all train types in the previous table (the corresponding figures being 4%, 4.7% and 5.3% respectively).

Table 6: The effect of train and RER stations on subcenter formation, IV Probit - Marginal effects

<table>
<thead>
<tr>
<th>Period:</th>
<th>Train stations</th>
<th>RER stations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All suburban municipalities</td>
<td>Without always sub</td>
</tr>
<tr>
<td>68-10</td>
<td>0.175(^a) (0.049)</td>
<td>0.039(^c) (0.021)</td>
</tr>
<tr>
<td>75-10</td>
<td>0.034(^c) (0.020)</td>
<td>0.044(^d) (0.017)</td>
</tr>
</tbody>
</table>

| F-S statistic | 114.12 | 44.56 | 43.62 | 36.83 | 29.43 | 10.74 | 9.91 | 11.21 |

ln(Densities)	Y	Y	Y	Y	Y	Y
ln(Dist to CBD)	Y	Y	Y	Y	Y	Y
Geography	Y	Y	Y	Y	Y	Y
History	Y	Y	Y	Y	Y	Y
Socioeconomy	Y	Y	Y	Y	Y	Y

Observations: 7680 (1280 × 6 years) 6400 (1280 × 5) 6115 (1223 × 5) 7680 (1280 × 6 years) 6400 (1280 × 5) 6115 (1223 × 5)

Instrument: Dummy=1 if municipality is crossed by a 1870 rail

Notes: All regressions include year effects. Robust standard errors are clustered by municipality and are in parentheses. \(^a\), \(^b\), and \(^c\) indicates significant at 1, 5, and 10 percent level, respectively.

On the other hand, the RER results reveal that this particular type of train has a much stronger impact on subcenter formation. The existence of a RER station is indeed found to increase the probability of becoming (part of) a subcenter by 14% over the 1968-2010 period (column 6), an effect about four times as large as for suburban trains. Interestingly, looking at the later period (after 1975) does not show a significantly different effect (13.5%, column 7).

4.2 Does proximity to rail stations lead to subcenters?

We now want to examine the effect of the distance to a train station on subcenter formation. This presents a double advantage: it enables us to measure the spatial effect of the presence of
a train station, and allows to consider the effect of a train station on municipalities that do not possess any. In other words, we investigate whether the effect of a rail station can go beyond the boundaries of the municipality where the station is located.

To this aim, we now use the distance (in log) of a municipality’s centroid to the closest train station as the train station variable. The main conclusion to be drawn from the results reported in Table 7 is that train stations have extended spatial effects: being closer to a station increases the probability to be (part of) a subcenter, even for municipalities without any station.

Table 7: The effect of rail proximity on subcenter formation, IV Probit - Marginal effects

<table>
<thead>
<tr>
<th>Dependent var.: Probability of being (part of) a subcenter</th>
<th>All suburban stations</th>
<th>Train stations</th>
<th>RER stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period:</td>
<td>All suburban muni</td>
<td>Without muni-stat</td>
<td>All suburban muni</td>
</tr>
<tr>
<td></td>
<td>68-10</td>
<td>68-10</td>
<td>68-10</td>
</tr>
<tr>
<td>ln(Distance)</td>
<td>-0.092<sup>a</sup></td>
<td>-0.024<sup>a</sup></td>
<td>-0.027<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td>(0.007)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>ln(Densities)</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>ln(Dist to CBD)</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Geography</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>History</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Socioeconomy</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Observations:</td>
<td>7680</td>
<td>7680</td>
<td>4885</td>
</tr>
<tr>
<td></td>
<td>(1280×6)</td>
<td>(1280×5)</td>
<td>(977×5)</td>
</tr>
<tr>
<td>Instrument:</td>
<td>ln(Distance to the nearest 1870 rail)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: All regressions include year effects. Robust standard errors are clustered by municipality and are in parentheses. ^a, ^b, and ^c indicates significant at 1, 5, and 10 percent level, respectively.

As in the previous section, we find a very similar effect of the proximity to any type of train or to suburban train alone. In this case, getting closer to a station by one kilometer increases the probability of becoming a subcenter by 2.4% (columns 2 and 6), or by 2.7% considering the 1975-2010 period (columns 3 and 7). On the other hand, the effect of being one kilometer closer to an RER station is estimated at 4.2% (column 10). Therefore, proximity to a station matters in the suburbanization process, especially for RER station.

We obtain similar results when we restrict our sample to the 977 suburban municipalities that do not have any station within their boundaries (columns 4, 8 and 11). This effect, of 3% for suburban trains and 4.9% for RER, confirms the spatially lagged effect of train stations.

Finally, we check that our results are robust to subcenter size (more or less than 50,000 inhabitants) and definition (subcenters identified using the 5% threshold instead of 10%), and to a more restrictive sample after dropping observations for historical towns and municipalities.
crossed by railroads during the 19th century. These tests are reported in Tables E.1 Panel B and E.2 Panel B in Appendix E.

To summarize the results of this section, two main points can be highlighted. First, train stations do play a role in the subcenter formation process, and this effect is spatially lagged: the existence of a train station increases the probability of becoming part of a subcenter by 4 to 5%, and decreases at a rate of about 3% per kilometer. Second, the RER is the type of train having the most important effect, with a direct effect of around 14% for municipalities with a station, and a spatial decay of about 5% per kilometer.

5. Conclusions

In this paper we investigate the effect of railroad construction on the emergence of employment subcenters in metropolitan Paris between 1968 and 2010. Because of the potential endogeneity problem of railroad provision, we rely on IV estimations that use historical instruments built on the 19th century railroad network: a dummy for municipalities crossed by 1870 railroads, and the (log) distance to the nearest 1870 railroad.

We provide descriptive evidence of an employment decentralization process: while the number of jobs grew by 30% in the whole metropolitan area, it declined by 7.1% in central and increased by 65% in suburban municipalities between 1968 and 2010. Simultaneously, we highlight the important railroad improvements in the same period: the construction of the Réseau Exoress Réginal increased the railroad network with 5 new lines with 587 km and 243 stations. Our first results confirm that only railroads foster local employment growth: our average estimates reveal that job growth increases with proximity to rail stations. When we focus on central Paris, results confirm that railroads do cause job decentralization: getting closer to a rail station tends to reduce employment over time.

We then focus on the suburbs to study the spatial pattern of job decentralization. We identify employment subcenters and, despite some municipalities emerge as (part of) subcenters whereas others were dropped, the number of subcenters grew from 21 in 1968 to 35 in 2010. Since employment growth in these subcenters was very intense over the period, we conclude that employment decentralization in Paris is more clustered around subcenters than diffuse, thus reinforcing the polycentric nature of the city.

Finally, we investigate whether railroads cause the emergence of employment subcenters in Paris and our results confirm the causal effect. On average, the probability of a suburban municipality of being (part of a) subcenter increases by 5% if the municipality has a rail station within its boundaries, or by 3% if, although not having a rail station, municipality proximity to a rail station increases by 10%. Results for the RER confirm its effect is stronger: a 10% and a 5% increase in the probability of becoming (part of a) subcenter if the municipality has a RER station or if municipality proximity to a RER station increases by 10%, respectively.

The contribution of the paper is relevant because, as far as we know, it provides the first empirical evidence on the causal effect of transportation (railroad) on subcenter formation. Furthermore, these new results are useful for urban planners facing and dealing the consequences
of urban growth and, in particular, of population suburbanization, employment decentralization and urban sprawl: while these phenomena might reduce city’s agglomeration economies (Glaeser and Kahn, 2004), the emergence of employment subcenters can potentially compensate and even overcome these loses by offering new agglomeration economies and avoiding CBD’s congestion costs (McMillen, 2004).

References

Appendix A. 1968-2010: Decentralization and transportation improvements

Table A.1: Employment trends in metropolitan Paris, 1968–2010

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CBD (municipality of Paris)</td>
<td>1,936</td>
<td>1,918</td>
<td>1,808</td>
<td>1,815</td>
<td>1,601</td>
<td>1,798</td>
<td>-138 (-7.1%)</td>
</tr>
<tr>
<td>MA share</td>
<td>45.3%</td>
<td>41.0%</td>
<td>38.4%</td>
<td>35.8%</td>
<td>31.8%</td>
<td>31.7%</td>
<td></td>
</tr>
<tr>
<td>Suburban municipalities</td>
<td>2,341</td>
<td>2,757</td>
<td>2,897</td>
<td>3,261</td>
<td>3,441</td>
<td>3,871</td>
<td>1,530 (65.4%)</td>
</tr>
<tr>
<td>MA share</td>
<td>54.7%</td>
<td>59.0%</td>
<td>61.6%</td>
<td>64.2%</td>
<td>68.2%</td>
<td>68.3%</td>
<td></td>
</tr>
</tbody>
</table>

Note: Employment values are thousands of jobs. Growth rates are in parentheses.

Figure A.1: Transportation infrastructures in metropolitan Paris, 2010
Appendix B. Rail transit in Paris: Past and present

One of the main purposes of this paper is to evaluate whether and to what extent transportation has fostered the emergence of employment subcenters in metropolitan Paris. However, first we need to deal with an identification issue because transportation and its improvements are not placed randomly. On the contrary, they are endogenous to employment and/or population location and growth. Planners may for instance decide to improve the connection of deprived areas in order to boost their economic activity or attract population. In order to address this issue, we adopt an instrumental variable approach in which some variables, named instruments, are used as sources of exogenous variation for our transportation endogenous variables.

Recent literature highlights the advantages in terms of exogeneity and relevance of using ‘historical’ and ‘planned’ instruments. For instance, Baum-Snow (2007), Michaels (2008) and Duranton and Turner (2012) use the 1947 plan of the interstate highway system as an instrument for modern highways in the US, and Duranton and Turner (2012) additionally rely on the 1898 railroad network. Garcia-López (2012) uses the ancient Roman roads, and the 19th century main road and railroad networks as instruments for highways and railroads in metropolitan Barcelona. Finally, Garcia-López et al. (2015b) use the ancient Roman roads and the 1760 Bourbon roads (post routes) to instrument current highways in Spain.

Following the above mentioned literature, we instrument modern railroads in metropolitan Paris with a historical instrument, the 1870 railroad network. The first French railroads were built at the beginning of the 19th century, but slightly later than in the UK due to Napoleon wars: the first line connecting Paris to a city located 18 km away (Saint-Germain) was not opened before 1837. In 1870, the railroad network was based on 698 km of railroad lines. Due to the high levels of centralization in France, it had a star-shaped form centered around Paris (Figure B.1).

Figure B.1: The 1870 railroads

Source: Own elaboration based on Martí-Henneberg (2013) maps.
Is the 1870 rail network a valid instrument?

As above mentioned, the fact that modern roads and railroads were built following ancient infrastructures has already been argued and used in the literature. Common sense would suggest that in France as well, past infrastructures shape current ones due to practical reasons: it is easier and cheaper to build new transportation infrastructures as an improvement of old ones for instance, or close to them (Duranton and Turner, 2012). We now test empirically the credibility of this assumption in the context of the metropolitan area of Paris. To do so, we conditionally regress our endogenous rail variables on their historical counterparts and some control variables:

\[
\begin{align*}
\text{2010 Rail transit variable} &= \alpha_0 + \alpha_1 \times \text{1870 rail transit variable} \\
& \quad + \sum_i (a_{2,i} \times \text{control variables}) \tag{B.1}
\end{align*}
\]

It is important to point out the importance of the control variables, in particular geography and history. Although ancient transportation infrastructures may be exogenous because of the length of time since they were built, the significant changes undergone by society and economy in the intervening years, and, in particular, because neither of them were built to anticipate employment and population changes in a distant future; it is also true that other factors such as the geography are likely to have influenced the construction and location of both ancient and modern transportation infrastructures for obvious reasons related to the feasibility and convenience of infrastructure building. From this point of view, it is crucial to include geographic characteristics such as altitude, index of terrain ruggedness, and elevation range as controls to comply with the exogeneity condition.

On the other hand, it is equally important to control for the historical context, since it may explain both the presence of former infrastructure and the economic importance of present-days municipalities. In order to fulfill the exclusion restriction, and because there are no historical employment and population data at the municipal level prior to 1962 and 1968, we control for history by including the population level in 1962 and dummy variables indicating (1) whether municipalities were Roman settlements, (2) whether they used to be major towns between the 10th and the 15th centuries and (3) between the 16th and the 19th centuries, and (4) whether they had a monastery built between the 12th and 16th centuries. These dummy variables come from the Digital Atlas of Roman and Medieval Civilizations, with the exception of the major cities of the 16th to 19th centuries which are identified in Bairoch (1988). To put it differently, we assume conditional exogeneity of the proposed instruments, as suggested by (Duranton and Turner, 2012).

Regarding the relevance of our potential instruments, Table B.1 shows results for versions of Eq. (B.1) in which we analyze the relationship between modern and past railroads in terms of the presence of stations and proximity to them. In particular, in Panel A, we study whether suburban municipalities crossed by a 1870 rail receive a rail stations. In all cases (pooled vs. cross section regressions in columns 1 and 2-3, all railroads vs. train and RER regressions in columns 1 and 4-5) we find significant and positive coefficients for the presence of 1870 rails. In Panel B, we estimate the effect of municipality proximity to 1870 rail on the municipality proximity to the
nearest modern rail. Conditional on control variables, estimated coefficients for the 1870 distance variable are positive and highly significant. As a whole, results in Table B.1 clearly show that historical rails matter for modern rail construction and location.

Table B.1: Modern rail transit as a function of past rail transit, OLS estimates

<table>
<thead>
<tr>
<th>Panel A: Rail stations</th>
<th>Panel B: Proximity to rail stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent var.</td>
<td>Dummy=1 if muni with station</td>
</tr>
<tr>
<td>Rail type:</td>
<td>Rail</td>
</tr>
<tr>
<td>Period/year:</td>
<td>75-10</td>
</tr>
<tr>
<td>Dummy=1 if crossed by 1870 rail</td>
<td>0.179<sup>a</sup></td>
</tr>
<tr>
<td>Adjusted R<sup>2</sup></td>
<td>0.37</td>
</tr>
<tr>
<td>F-S statistic</td>
<td>38.04</td>
</tr>
<tr>
<td>ln(Densities)</td>
<td>Y</td>
</tr>
<tr>
<td>ln(Dist to CBD)</td>
<td>Y</td>
</tr>
<tr>
<td>Geography</td>
<td>Y</td>
</tr>
<tr>
<td>History</td>
<td>Y</td>
</tr>
<tr>
<td>Socioeconomy</td>
<td>Y</td>
</tr>
<tr>
<td>Observations:</td>
<td>6115</td>
</tr>
<tr>
<td>(1223×5)</td>
<td></td>
</tr>
</tbody>
</table>

Period:	75-10	75-10	75-10	
ln(Distance to nearest 1870 rail)	0.180^a	0.121^a	0.093^a	
Adjusted R²	0.54	0.42	0.71	
F-S statistic	39.92	19.25	12.92	
ln(Densities)	Y	Y	Y	
ln(Dist to CBD)	Y	Y	Y	
Geography	Y	Y	Y	
History	Y	Y	Y	
Socioeconomy	Y	Y	Y	
Observations:	4885	4885	4885	
(977 muni × 5 years)				

Notes: Pooled regressions in Columns 1 and 4 to 8 include year effects. Cross section regressions in Columns 2 and 3 include a constant. Columns 1 to 3, Columns 4 and 5, and Columns 6 to 8 show first-stage results for regressions in Table 5 Columns 8 to 10, Table 6 Columns 4 and 8, and Table 7 Columns 4, 8 and 11, respectively. Robust standard errors are clustered by municipality and are in parentheses. ^a, ^b, and ^c indicates significant at 1, 5, and 10 percent level, respectively.
Appendix C. LWR and urban spatial structure in metropolitan Paris, 1968–2010

Table C.1: Employment spatial structure and LWR: A benchmark to identify subcenters

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1% LWR Benchmark</td>
<td>Polycentric</td>
<td>Polycentric</td>
<td>Polycentric</td>
<td>Polycentric</td>
<td>Polycentric</td>
<td>Polycentric</td>
</tr>
<tr>
<td>3% LWR Benchmark</td>
<td>Polycentric</td>
<td>Polycentric</td>
<td>Polycentric</td>
<td>Polycentric</td>
<td>Polycentric</td>
<td>Polycentric</td>
</tr>
<tr>
<td>5% LWR Benchmark</td>
<td>Polycentric</td>
<td>Polycentric</td>
<td>Polycentric</td>
<td>Polycentric</td>
<td>Polycentric</td>
<td>Polycentric</td>
</tr>
<tr>
<td>7% LWR Benchmark</td>
<td>Polycentric</td>
<td>Polycentric</td>
<td>Polycentric</td>
<td>Polycentric</td>
<td>Polycentric</td>
<td>Polycentric</td>
</tr>
<tr>
<td>9% LWR Benchmark</td>
<td>Polycentric</td>
<td>Polycentric</td>
<td>Polycentric</td>
<td>Polycentric</td>
<td>Polycentric</td>
<td>Polycentric</td>
</tr>
<tr>
<td>10% LWR Benchmark</td>
<td>Polycentric</td>
<td>Polycentric</td>
<td>Polycentric</td>
<td>Polycentric</td>
<td>Polycentric</td>
<td>Polycentric</td>
</tr>
<tr>
<td>30% LWR Benchmark</td>
<td>Polycentric</td>
<td>Polycentric</td>
<td>Polycentric</td>
<td>Polycentric</td>
<td>Polycentric</td>
<td>Polycentric</td>
</tr>
<tr>
<td>50% LWR Benchmark</td>
<td>Monocentric</td>
<td>Monocentric</td>
<td>Monocentric</td>
<td>Monocentric</td>
<td>Monocentric</td>
<td>Monocentric</td>
</tr>
<tr>
<td>70% LWR Benchmark</td>
<td>Monocentric</td>
<td>Monocentric</td>
<td>Monocentric</td>
<td>Monocentric</td>
<td>Monocentric</td>
<td>Monocentric</td>
</tr>
<tr>
<td>90% LWR Benchmark</td>
<td>Monocentric</td>
<td>Monocentric</td>
<td>Monocentric</td>
<td>Monocentric</td>
<td>Monocentric</td>
<td>Monocentric</td>
</tr>
</tbody>
</table>

Table C.2: Employment spatial structure and LWR: Akaike information criterion

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1% LWR Akaike inf. crit.</td>
<td>746</td>
<td>767</td>
<td>770</td>
<td>778</td>
<td>774</td>
<td>782</td>
</tr>
<tr>
<td>3% LWR Akaike inf. crit.</td>
<td>397</td>
<td>433</td>
<td>446</td>
<td>462</td>
<td>460</td>
<td>479</td>
</tr>
<tr>
<td>5% LWR Akaike inf. crit.</td>
<td>346</td>
<td>386</td>
<td>402</td>
<td>423</td>
<td>422</td>
<td>446</td>
</tr>
<tr>
<td>7% LWR Akaike inf. crit.</td>
<td>336</td>
<td>377</td>
<td>393</td>
<td>417</td>
<td>417</td>
<td>444</td>
</tr>
<tr>
<td>9% LWR Akaike inf. crit.</td>
<td>340</td>
<td>380</td>
<td>396</td>
<td>421</td>
<td>421</td>
<td>450</td>
</tr>
<tr>
<td>10% LWR Akaike inf. crit.</td>
<td>345</td>
<td>386</td>
<td>401</td>
<td>426</td>
<td>426</td>
<td>456</td>
</tr>
<tr>
<td>30% LWR Akaike inf. crit.</td>
<td>573</td>
<td>598</td>
<td>605</td>
<td>590</td>
<td>631</td>
<td>631</td>
</tr>
<tr>
<td>50% LWR Akaike inf. crit.</td>
<td>817</td>
<td>837</td>
<td>820</td>
<td>828</td>
<td>797</td>
<td>833</td>
</tr>
<tr>
<td>70% LWR Akaike inf. crit.</td>
<td>1081</td>
<td>1112</td>
<td>1094</td>
<td>1109</td>
<td>1067</td>
<td>1120</td>
</tr>
<tr>
<td>90% LWR Akaike inf. crit.</td>
<td>1284</td>
<td>1331</td>
<td>1318</td>
<td>1346</td>
<td>1301</td>
<td>1364</td>
</tr>
</tbody>
</table>
Appendix D. Do rails and highways jointly foster local growth in Paris?

Table D.1: The effect of rail transit and highways on employment growth, TSLS estimates

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Δln(Employment density)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[1]</td>
</tr>
<tr>
<td>ln(Dist to rail station) in year t-1</td>
<td>-0.446<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>(0.123)</td>
</tr>
<tr>
<td>ln(Dist to highway ramp) in year t-1</td>
<td>-0.090</td>
</tr>
<tr>
<td></td>
<td>(0.126)</td>
</tr>
<tr>
<td>ln(Emp density) in year t-1</td>
<td>-0.677<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>(0.071)</td>
</tr>
<tr>
<td>ln(Pop density) in year t-1</td>
<td>0.478<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>(0.101)</td>
</tr>
<tr>
<td>First-stage statistic</td>
<td>58.00</td>
</tr>
<tr>
<td>ln(Distance to CBD)</td>
<td>Y</td>
</tr>
<tr>
<td>Geography</td>
<td>Y</td>
</tr>
<tr>
<td>History</td>
<td>Y</td>
</tr>
<tr>
<td>Socioeconomy</td>
<td>Y</td>
</tr>
<tr>
<td>Instruments:</td>
<td>ln(Distance to the nearest 1870 railroad line)</td>
</tr>
</tbody>
</table>

Notes: 1300 observations in each regression. Robust standard errors are in parentheses. a, b, and c indicates significant at 1, 5, and 10 percent level, respectively.
Appendix E. Does rail transit cause subcenter formation? Robustness checks

Table E.1: The effect of rail on subcenter formation, IV Probit - Marginal effects: Robustness to subcenter size and significance

<table>
<thead>
<tr>
<th>Panel A: The effect of rail stations</th>
<th>Panel B: The effect of proximity to rail stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent var.: Probability of being subcenter</td>
<td>Dependent var.: Probability of being subcenter</td>
</tr>
<tr>
<td>Subcenter jobs</td>
<td>Without</td>
</tr>
<tr>
<td>≥50,000</td>
<td><50,000</td>
</tr>
<tr>
<td>Period:</td>
<td>75-10</td>
</tr>
<tr>
<td>Station dummy</td>
<td>0.036<sup>c</sup></td>
</tr>
<tr>
<td>(0.020)</td>
<td>(0.023)</td>
</tr>
<tr>
<td>F-S statistic</td>
<td>34.20</td>
</tr>
<tr>
<td>ln(Densities)</td>
<td>Y</td>
</tr>
<tr>
<td>ln(Dist to CBD)</td>
<td>Y</td>
</tr>
<tr>
<td>Geography</td>
<td>Y</td>
</tr>
<tr>
<td>History</td>
<td>Y</td>
</tr>
<tr>
<td>Socioeconomy</td>
<td>Y</td>
</tr>
<tr>
<td>Observations:</td>
<td>6214</td>
</tr>
<tr>
<td>Instrument:</td>
<td>Dummy=1 if crossed by a 1870 rail</td>
</tr>
</tbody>
</table>

Notes: All regressions include year effects. Robust standard errors are clustered by municipality and are in parentheses. ^a, ^b, and ^c indicates significant at 1, 5, and 10 percent level, respectively.
Table E.2: The effect of rail on subcenter formation, IV Probit - Marginal effects: Robustness to identification strategy

Panel A: The effect of rail stations

<table>
<thead>
<tr>
<th>Dependent var.: Probability of being subcenter</th>
<th>Period:</th>
<th>Station dummy</th>
<th>F-S statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>No historic towns No 1870 stations</td>
<td>75-10</td>
<td>0.067<sup>a</sup></td>
<td>34.55</td>
</tr>
<tr>
<td>Period: 75-10</td>
<td>[1]</td>
<td>(0.023)</td>
<td></td>
</tr>
<tr>
<td>No historic towns No 1870 stations</td>
<td>75-10</td>
<td>0.046<sup>b</sup></td>
<td>35.13</td>
</tr>
<tr>
<td>Period: 75-10</td>
<td>[2]</td>
<td>(0.022)</td>
<td></td>
</tr>
<tr>
<td>No historic towns No 1870 stations</td>
<td>75-10</td>
<td>0.049<sup>b</sup></td>
<td>8.53</td>
</tr>
<tr>
<td>Period: 75-10</td>
<td>[3]</td>
<td>(0.023)</td>
<td></td>
</tr>
<tr>
<td>No historic towns No 1870 stations</td>
<td>75-10</td>
<td>0.037<sup>c</sup></td>
<td>10.64</td>
</tr>
<tr>
<td>Period: 75-10</td>
<td>[4]</td>
<td>(0.021)</td>
<td></td>
</tr>
<tr>
<td>No historic towns No 1870 stations</td>
<td>75-10</td>
<td>-0.023<sup>d</sup></td>
<td>52.85</td>
</tr>
<tr>
<td>Period: 75-10</td>
<td>[5]</td>
<td>(0.006)</td>
<td></td>
</tr>
<tr>
<td>No historic towns No 1870 stations</td>
<td>75-10</td>
<td>-0.010<sup>c</sup></td>
<td>50.69</td>
</tr>
<tr>
<td>Period: 75-10</td>
<td>[6]</td>
<td>(0.005)</td>
<td></td>
</tr>
<tr>
<td>No historic towns No 1870 stations</td>
<td>75-10</td>
<td>-0.025<sup>d</sup></td>
<td>95.90</td>
</tr>
<tr>
<td>Period: 75-10</td>
<td>[7]</td>
<td>(0.004)</td>
<td></td>
</tr>
<tr>
<td>No historic towns No 1870 stations</td>
<td>75-10</td>
<td>-0.020<sup>d</sup></td>
<td>90.45</td>
</tr>
<tr>
<td>Period: 75-10</td>
<td>[8]</td>
<td>(0.004)</td>
<td></td>
</tr>
</tbody>
</table>

Panel B: The effect of proximity to rail stations

<table>
<thead>
<tr>
<th>Dependent var.: Probability of being subcenter</th>
<th>Period:</th>
<th>ln(Density)</th>
<th>F-S statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>No historic towns No 1870 stations</td>
<td>75-10</td>
<td>Y</td>
<td>52.85</td>
</tr>
<tr>
<td>Period: 75-10</td>
<td>[5]</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>No historic towns No 1870 stations</td>
<td>75-10</td>
<td>Y</td>
<td>50.69</td>
</tr>
<tr>
<td>Period: 75-10</td>
<td>[6]</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>No historic towns No 1870 stations</td>
<td>75-10</td>
<td>Y</td>
<td>95.90</td>
</tr>
<tr>
<td>Period: 75-10</td>
<td>[7]</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>No historic towns No 1870 stations</td>
<td>75-10</td>
<td>Y</td>
<td>90.45</td>
</tr>
<tr>
<td>Period: 75-10</td>
<td>[8]</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

Notes: All regressions include year effects. Robust standard errors are clustered by municipality and are in parentheses. ^a, ^b, and ^c indicates significant at 1, 5, and 10 percent level, respectively.
CREAP2006-01
Matas, A. (GEAP); Raymond, J.L. (GEAP)
“Economic development and changes in car ownership patterns”
(Juny 2006)

CREAP2006-02
Trillas, F. (IEB); Montolio, D. (IEB); Duch, N. (IEB)
“Productive efficiency and regulatory reform: The case of Vehicle Inspection Services”
(Setembre 2006)

CREAP2006-03
Bel, G. (PPRE-IREA); Fageda, X. (PPRE-IREA)
“Factors explaining local privatization: A meta-regression analysis”
(Octubre 2006)

CREAP2006-04
Fernández-Villadangos, L. (PPRE-IREA)
“Are two-part tariffs efficient when consumers plan ahead?: An empirical study”
(Octubre 2006)

CREAP2006-05
Artís, M. (AQR-IREA); Ramos, R. (AQR-IREA); Suriñach, J. (AQR-IREA)
“Job losses, outsourcing and relocation: Empirical evidence using microdata”
(Octubre 2006)

CREAP2006-06
Alcañiz, M. (RISC-IREA); Costa, A.; Guillén, M. (RISC-IREA); Luna, C.; Rovira, C.
“Calculation of the variance in surveys of the economic climate”
(Novembre 2006)

CREAP2006-07
Albalate, D. (PPRE-IREA)
“Lowering blood alcohol content levels to save lives: The European Experience”
(Desembre 2006)

CREAP2006-08
Garrido, A. (IEB); Arqué, P. (IEB)
“The choice of banking firm: Are the interest rate a significant criteria?”
(Desembre 2006)

CREAP2006-09
Segarra, A. (GRIT); Teruel-Carrizosa, M. (GRIT)
“Productivity growth and competition in spanish manufacturing firms: What has happened in recent years?”
(Desembre 2006)

CREAP2006-10
Andonova, V.; Díaz-Serrano, Luis. (CREB)
“Political institutions and the development of telecommunications”
(Desembre 2006)

CREAP2006-11
Raymond, J.L. (GEAP); Roig, J.L. (GEAP)
“Capital humano: un análisis comparativo Catalunya-España”
(Desembre 2006)

CREAP2006-12
Rodríguez, M.(CREB); Stoyanova, A. (CREB)
“Changes in the demand for private medical insurance following a shift in tax incentives”
(Desembre 2006)

CREAP2006-13
Royuela, V. (AQR-IREA); Lambiri, D.; Biagi, B.
“Economía urbana y calidad de vida. Una revisión del estado del conocimiento en España”
(Desembre 2006)
CREAP2006-14
Camarero, M.; Carrion-i-Silvestre, J.LL. (AQR-IREA); Tamarit, C.
"New evidence of the real interest rate parity for OECD countries using panel unit root tests with breaks”
(Desembre 2006)

CREAP2006-15
Karanassou, M.; Sala, H. (GEAP); Snower, D. J.
"The macroeconomics of the labor market: Three fundamental views”
(Desembre 2006)

2007

XREAP2007-01
Castany, I. (AQR-IREA); López-Bazo, E. (AQR-IREA); Moreno, R. (AQR-IREA)
"Decomposing differences in total factor productivity across firm size”
(Març 2007)

XREAP2007-02
Raymond, J. Ll. (GEAP); Roig, J. Ll. (GEAP)
"Una propuesta de evaluación de las externalidades de capital humano en la empresa”
(Abril 2007)

XREAP2007-03
Durán, J. M. (IEB); Esteller, A. (IEB)
“An empirical analysis of wealth taxation: Equity vs. Tax compliance”
(Juny 2007)

XREAP2007-04
Matas, A. (GEAP); Raymond, J.Ll. (GEAP)
“Cross-section data, disequilibrium situations and estimated coefficients: evidence from car ownership demand”
(Juny 2007)

XREAP2007-05
Jofre-Montseny, J. (IEB); Solé-Ollé, A. (IEB)
“Tax differentials and agglomeration economies in intraregional firm location”
(Juny 2007)

XREAP2007-06
Álvarez-Albelo, C. (CREB); Hernández-Martín, R.
“Explaining high economic growth in small tourism countries with a dynamic general equilibrium model”
(Juliol 2007)

XREAP2007-07
Duch, N. (IEB); Montolio, D. (IEB); Mediavilla, M.
“Evaluating the impact of public subsidies on a firm’s performance: a quasi-experimental approach”
(Juliol 2007)

XREAP2007-08
Segarra-Blasco, A. (GRIT)
“Innovation sources and productivity: a quantile regression analysis”
(Octubre 2007)

XREAP2007-09
Albalate, D. (PPRE-IREA)
“Shifting death to their Alternatives: The case of Toll Motorways”
(Octubre 2007)

XREAP2007-10
Segarra-Blasco, A. (GRIT); Garcia-Quevedo, J. (IEB); Teruel-Carrizosa, M. (GRIT)
“Barriers to innovation and public policy in catalonia”
(Novembre 2007)

XREAP2007-11
Bel, G. (PPRE-IREA); Foote, J.
“Comparison of recent toll road concession transactions in the United States and France”
(Novembre 2007)
XREAP2007-12
Segarra-Blasco, A. (GRIT);
“Innovation, R&D spillovers and productivity: the role of knowledge-intensive services”
(Novembre 2007)

XREAP2007-13
Bermúdez Morata, Ll. (RFA-IREA); Guillén Estany, M. (RFA-IREA), Solé Auró, A. (RFA-IREA)
“Impacto de la inmigración sobre la esperanza de vida en salud y en discapacidad de la población española”
(Novembre 2007)

XREAP2007-14
Calaeys, P. (AQR-IREA); Ramos, R. (AQR-IREA), Suriñach, J. (AQR-IREA)
“Fiscal sustainability across government tiers”
(Desembre 2007)

XREAP2007-15
Sánchez Hugalbe, A. (IEB)
“Influencia de la inmigración en la elección escolar”
(Desembre 2007)

2008

XREAP2008-01
Durán Weitkamp, C. (GRIT); Martín Bofarull, M. (GRIT) ; Pablo Martí, F.
“Economic effects of road accessibility in the Pyrenees: User perspective”
(Gener 2008)

XREAP2008-02
Díaz-Serrano, L.; Stoyanova, A. P. (CREB)
“The Causal Relationship between Individual’s Choice Behavior and Self-Reported Satisfaction: the Case of Residential Mobility in the EU”
(Març 2008)

XREAP2008-03
Matas, A. (GEAP); Raymond, J. L. (GEAP); Roig, J. L. (GEAP)
“Car ownership and access to jobs in Spain”
(Abril 2008)

XREAP2008-04
Bel, G. (PPRE-IREA) ; Fageda, X. (PPRE-IREA)
“Privatization and competition in the delivery of local services: An empirical examination of the dual market hypothesis”
(Abril 2008)

XREAP2008-05
Matas, A. (GEAP); Raymond, J. L. (GEAP); Roig, J. L. (GEAP)
“Job accessibility and employment probability”
(Maig 2008)

XREAP2008-06
Basher, S. A.; Carrión, J. Ll. (AQR-IREA)
Deconstructing Shocks and Persistence in OECD Real Exchange Rates
(Juny 2008)

XREAP2008-07
Sanromá, E. (IEB); Ramos, R. (AQR-IREA); Simón, H.
Portabilidad del capital humano y asimilación de los inmigrantes. Evidencia para España
(Juliol 2008)

XREAP2008-08
Basher, S. A.; Carrión, J. Ll. (AQR-IREA)
Price level convergence, purchasing power parity and multiple structural breaks: An application to US cities
(Juliol 2008)

XREAP2008-09
Bermúdez, Ll. (RFA-IREA)
A priori ratemaking using bivariate poisson regression models
(Juliol 2008)
Does urban sprawl increase the costs of providing local public services? Evidence from Spanish municipalities
(Novembre 2008)

Immigration and Firm Growth: Evidence from Spanish cities
(Novembre 2008)

Assessing the assignation of public subsidies: Do the experts choose the most efficient R&D projects?
(Novembre 2008)

Scheduled service versus personal transportation: the role of distance
(Desembre 2008)

Tourism and urban transport: Holding demand pressure under supply constraints
(Desembre 2008)

A theoretical and practical study on linear reforms of dual taxes
(Febrer 2009)

“Exploring Determinants of Urban Motorcycle Accident Severity: The Case of Barcelona”
(Març 2009)

“Assessing excess profits from different entry regulations”
(Abril 2009)

“Los salarios de los inmigrantes en el mercado de trabajo español. ¿Importa el origen del capital humano?”
(Abril 2009)

“(No)competition in the Spanish retailing gasoline market: a variance filter approach”
(Maig 2009)

“International trade as the sole engine of growth for an economy”
(Juny 2009)

“The Black Box of Business Dynamics”
(Setembre 2009)

“The antecedents and innovation consequences of organizational search: empirical evidence for Spain”
(Octubre 2009)
XREAP2009-09
Domènech Campmajó, L. (PPRE-IREA)
“Competition between TV Platforms”
(Octubre 2009)

XREAP2009-10
Solé-Auró, A. (RFA-IREA), Guillén, M. (RFA-IREA), Crimmins, E. M.
“Health care utilization among immigrants and native-born populations in 11 European countries. Results from the Survey of Health, Ageing and Retirement in Europe”
(Octubre 2009)

XREAP2009-11
Segarra, A. (GRIT), Teruel, M. (GRIT)
“Small firms, growth and financial constraints”
(Octubre 2009)

XREAP2009-12
Matas, A. (GEAP), Raymond, J.LL. (GEAP), Ruiz, A. (GEAP)
“Traffic forecasts under uncertainty and capacity constraints”
(Novembre 2009)

XREAP2009-13
Sole-Ollé, A. (IEB)
“Inter-regional redistribution through infrastructure investment: tactical or programmatic?”
(Novembre 2009)

XREAP2009-14
Del Barrio-Castro, T., García-Quevedo, J. (IEB)
“The determinants of university patenting: Do incentives matter?”
(Novembre 2009)

XREAP2009-15
Ramos, R. (AQR-IREA), Suriñach, J. (AQR-IREA), Artís, M. (AQR-IREA)
“Human capital spillovers, productivity and regional convergence in Spain”
(Novembre 2009)

XREAP2009-16
Álvarez-Albelo, C. D. (CREB), Hernández-Martín, R.
“The commons and anti-commons problems in the tourism economy”
(Desembre 2009)

2010

XREAP2010-01
García-López, M. A. (GEAP)
“The Accessibility City. When Transport Infrastructure Matters in Urban Spatial Structure”
(Febreir 2010)

XREAP2010-02
García-Quevedo, J. (IEB), Mas-Verdú, F. (IEB), Polo-Otero, J. (IEB)
“Which firms want PhDs? The effect of the university-industry relationship on the PhD labour market”
(Març 2010)

XREAP2010-03
Pitt, D., Guillén, M. (RFA-IREA)
“An introduction to parametric and non-parametric models for bivariate positive insurance claim severity distributions”
(Març 2010)

XREAP2010-04
Bermúdez, Ll. (RFA-IREA), Karlis, D.
“Modelling dependence in a ratemaking procedure with multivariate Poisson regression models”
(Abril 2010)

XREAP2010-05
Di Paolu, A. (IEB)
“Parental education and family characteristics: educational opportunities across cohorts in Italy and Spain”
(Maig 2010)
SÈRIE DE DOCUMENTS DE TREBALL DE LA XREAP

XREAP2010-06
Simón, H. (IEB), Ramos, R. (AQR-IREA), Sanromá, E. (IEB)
“Movilidad ocupacional de los inmigrantes en una economía de bajas cualificaciones. El caso de España”
(Juny 2010)

XREAP2010-07
Di Paolo, A. (GEAP & IEB), Raymond, J. Li. (GEAP & IEB)
“Language knowledge and earnings in Catalonia”
(Juliol 2010)

XREAP2010-08
“Prediction of the economic cost of individual long-term care in the Spanish population”
(Setembre 2010)

XREAP2010-09
Di Paolo, A. (GEAP & IEB)
“Knowledge of catalan, public/private sector choice and earnings: Evidence from a double sample selection model”
(Setembre 2010)

XREAP2010-10
Coad, A., Segarra, A. (GRIT), Teruel, M. (GRIT)
“Like milk or wine: Does firm performance improve with age?”
(Setembre 2010)

XREAP2010-11
Di Paolo, A. (GEAP & IEB), Raymond, J. Li. (GEAP & IEB). Calero, J. (IEB)
“Exploring educational mobility in Europe”
(Octubre 2010)

XREAP2010-12
Borrell, A. (GiM-IREA), Fernández-Villadangos, L. (GiM-IREA)
“Clustering or scattering: the underlying reason for regulating distance among retail outlets”
(Desembre 2010)

XREAP2010-13
Di Paolo, A. (GEAP & IEB)
“School composition effects in Spain”
(Desembre 2010)

XREAP2010-14
Fageda, X. (GiM-IREA), Flores-Filol, R.
“Technology, Business Models and Network Structure in the Airline Industry”
(Desembre 2010)

XREAP2010-15
Albalate, D. (GiM-IREA), Bel, G. (GiM-IREA), Fageda, X. (GiM-IREA)
“Is it Redistribution or Centralization? On the Determinants of Government Investment in Infrastructure”
(Desembre 2010)

XREAP2010-16
Oppedisano, V., Turati, G.
“What are the causes of educational inequalities and of their evolution over time in Europe? Evidence from PISA”
(Desembre 2010)

XREAP2010-17
Canova, L., Vaglio, A.
“Why do educated mothers matter? A model of parental help”
(Desembre 2010)

2011

XREAP2011-01
Fageda, X. (GiM-IREA), Perdiguero, J. (GiM-IREA)
“An empirical analysis of a merger between a network and low-cost airlines”
(Maig 2011)
XREAP2011-02
Moreno-Torres, I. (ACCO, CRES & GiM-IREA)
“What if there was a stronger pharmaceutical price competition in Spain? When regulation has a similar effect to collusion”
(Maig 2011)

XREAP2011-03
Migüélez, E. (AQR-IREA); Gómez-Miguélez, I.
“Singling out individual inventors from patent data”
(Maig 2011)

XREAP2011-04
Moreno-Torres, I. (ACCO, CRES & GiM-IREA)
“Generic drugs in Spain: price competition vs. moral hazard”
(Maig 2011)

XREAP2011-05
Nieto, S. (AQR-IREA), Ramos, R. (AQR-IREA)
“¿Afecta la sobreeducación de los padres al rendimiento académico de sus hijos?”
(Maig 2011)

XREAP2011-06
Pitt, D., Guillén, M. (RFA-IREA), Bolancé, C. (RFA-IREA)
“Estimation of Parametric and Nonparametric Models for Univariate Claim Severity Distributions - an approach using R”
(Juny 2011)

XREAP2011-07
Guillén, M. (RFA-IREA), Comas-Herrera, A.
“How much risk is mitigated by LTC Insurance? A case study of the public system in Spain”
(Juny 2011)

XREAP2011-08
Ayuso, M. (RFA-IREA), Guillén, M. (RFA-IREA), Bolancé, C. (RFA-IREA)
“Loss risk through fraud in car insurance”
(Juny 2011)

XREAP2011-09
Duch-Brown, N. (IEB), García-Quevedo, J. (IEB), Montolio, D. (IEB)
“The link between public support and private R&D effort: What is the optimal subsidy?”
(Juny 2011)

XREAP2011-10
Bermúdez, LI. (RFA-IREA), Karlis, D.
“Mixture of bivariate Poisson regression models with an application to insurance”
(Juliol 2011)

XREAP2011-11
Varela-Irimia, X-L. (GRIT)
“Age effects, unobserved characteristics and hedonic price indexes: The Spanish car market in the 1990s”
(Agost 2011)

XREAP2011-12
Bermúdez, LI. (RFA-IREA), Ferri, A. (RFA-IREA), Guillén, M. (RFA-IREA)
“A correlation sensitivity analysis of non-life underwriting risk in solvency capital requirement estimation”
(Setembre 2011)

XREAP2011-13
“A logistic regression approach to estimating customer profit loss due to lapses in insurance”
(Octubre 2011)

XREAP2011-14
Jiménez, J. L., Perdiguer, J. (GiM-IREA), García, C.
“Evaluation of subsidies programs to sell green cars: Impact on prices, quantities and efficiency”
(Octubre 2011)
XREAP2011-15
Arespa, M. (CREB)
“A New Open Economy Macroeconomic Model with Endogenous Portfolio Diversification and Firms Entry”
(Octubre 2011)

XREAP2011-16
Matas, A. (GEAP), Raymond, J. L. (GEAP), Roig, J.L. (GEAP)
“The impact of agglomeration effects and accessibility on wages”
(Novembre 2011)

XREAP2011-17
Segarra, A. (GRIT)
“R&D cooperation between Spanish firms and scientific partners: what is the role of tertiary education?”
(Novembre 2011)

XREAP2011-18
García-Pérez, J. I.; Hidalgo-Hidalgo, M.; Robles-Zurita, J. A.
“Does grade retention affect achievement? Some evidence from PISA”
(Novembre 2011)

XREAP2011-19
Arespa, M. (CREB)
“Macroeconomics of extensive margins: a simple model”
(Novembre 2011)

XREAP2011-20
García-Queuevedo, J. (IEB), Pellegrino, G. (IEB), Vivarelli, M.
“The determinants of YICs’ R&D activity”
(Desembre 2011)

XREAP2011-21
González-Val, R. (IEB), Olmo, J.
“Growth in a Cross-Section of Cities: Location, Increasing Returns or Random Growth?”
(Desembre 2011)

XREAP2011-22
Gombau, V. (GRIT), Segarra, A. (GRIT)
“The Innovation and Imitation Dichotomy in Spanish firms: do absorptive capacity and the technological frontier matter?”
(Desembre 2011)

2012

XREAP2012-01
Borrell, J. R. (GiM-IREA), Jiménez, J. L., García, C.
“Evaluating Antitrust Leniency Programs”
(Gener 2012)

XREAP2012-02
Ferri, A. (RFA-IREA), Guillén, M. (RFA-IREA), Bermúdez, I.L. (RFA-IREA)
“Solvency capital estimation and risk measures”
(Gener 2012)

XREAP2012-03
Ferri, A. (RFA-IREA), Bermúdez, I.L. (RFA-IREA), Guillén, M. (RFA-IREA)
“How to use the standard model with own data”
(Febrer 2012)

XREAP2012-04
Perdiguer, J. (GiM-IREA), Borrell, J.R. (GiM-IREA)
“Driving competition in local gasoline markets”
(Març 2012)

XREAP2012-05
D’Amico, G., Guillen, M. (RFA-IREA), Manca, R.
(Març 2012)
XREAP2012-06
Bové-Sans, M. A. (GRIT), Laguado-Ramírez, R.
“Quantitative analysis of image factors in a cultural heritage tourist destination”
(Abril 2012)

XREAP2012-07
“Changes in wage structure in Mexico going beyond the mean: An analysis of differences in distribution, 1987-2008”
(Maig 2012)

XREAP2012-08
“What underlies localization and urbanization economies? Evidence from the location of new firms”
(Maig 2012)

XREAP2012-09
Muñiz, I. (GEAP), Calatayud, D., Dobaño, R.
“Los límites de la compacidad urbana como instrumento a favor de la sostenibilidad. La hipótesis de la compensación en Barcelona medida a través de la huella ecológica de la movilidad y la vivienda”
(Maig 2012)

XREAP2012-10
Arqué-Castells, P. (GEAP), Mohnen, P.
“Sunk costs, extensive R&D subsidies and permanent inducement effects”
(Maig 2012)

XREAP2012-11
Boj, E. (CREB), Delicado, P., Fortiana, J., Esteve, A., Caballé, A.
“Local Distance-Based Generalized Linear Models using the dbstats package for R”
(Maig 2012)

XREAP2012-12
Royuela, V. (AQR-IREA)
“What about people in European Regional Science?”
(Maig 2012)

XREAP2012-13
Osorio A. M. (RFA-IREA), Bolancé, C. (RFA-IREA), Madise, N.
“Intermediary and structural determinants of early childhood health in Colombia: exploring the role of communities”
(Juny 2012)

XREAP2012-14
Miguelez. E. (AQR-IREA), Moreno, R. (AQR-IREA)
“Do labour mobility and networks foster geographical knowledge diffusion? The case of European regions”
(Juliol 2012)

XREAP2012-15
Teixidó-Figueras, J. (GRIT), Duró, J. A. (GRIT)
“Ecological Footprint Inequality: A methodological review and some results”
(Setembre 2012)

XREAP2012-16
Varela-Irimia, X-L., (GRIT)
“Profitability, uncertainty and multi-product firm product proliferation: The Spanish car industry”
(Setembre 2012)

XREAP2012-17
Duró, J. A. (GRIT), Teixidó-Figueras, J. (GRIT)
“Ecological Footprint Inequality across countries: the role of environment intensity, income and interaction effects”
(Octubre 2012)

XREAP2012-18
Manresa, A. (CREB), Sancho, F.
“Leontief versus Ghosh: two faces of the same coin”
(Octubre 2012)
XREAP2012-19
Alemany, R. (RFA-IREA), Bolancé, C. (RFA-IREA), Guillén, M. (RFA-IREA)
“Nonparametric estimation of Value-at-Risk”
(Octubre 2012)

XREAP2012-20
Herrera-Idárraga, P. (AQR-IREA), López-Bazo, E. (AQR-IREA), Motellón, E. (AQR-IREA)
“Informality and overeducation in the labor market of a developing country”
(Novembre 2012)

XREAP2012-21
Di Paolo, A. (AQR-IREA)
“(Endogenous) occupational choices and job satisfaction among recent PhD recipients: evidence from Catalonia”
(Desembre 2012)

2013

XREAP2013-01
Segarra, A. (GRIT), García-Quevedo, J. (IEB), Teruel, M. (GRIT)
“Financial constraints and the failure of innovation projects”
(Març 2013)

XREAP2013-02
Osorio, A. M. (RFA-IREA), Bolancé, C. (RFA-IREA), Madise, N., Rathmann, K.
“Social Determinants of Child Health in Colombia: Can Community Education Moderate the Effect of Family Characteristics?”
(Març 2013)

XREAP2013-03
Teixidó-Figueras, J. (GRIT), Duró, J. A. (GRIT)
“The building blocks of international ecological footprint inequality: a regression-based decomposition”
(Abril 2013)

XREAP2013-04
Salcedo-Sanz, S., Carro-Calvo, L., Claramunt, M. (CREB), Castañer, A. (CREB), Marmol, M. (CREB)
“An Analysis of Black-box Optimization Problems in Reinsurance: Evolutionary-based Approaches”
(Mai 2013)

XREAP2013-05
“Prevalence of alcohol-impaired drivers based on random breath tests in a roadside survey”
(Juliol 2013)

XREAP2013-06
Matas, A. (GEAP & IEB), Raymond, J. I. (GEAP & IEB), Roig, J. L. (GEAP)
“How market access shapes human capital investment in a peripheral country”
(Octubre 2013)

XREAP2013-07
Di Paolo, A. (AQR-IREA), Tansel, A.
“Returns to Foreign Language Skills in a Developing Country: The Case of Turkey”
(Novembre 2013)

XREAP2013-08
Fernández Gual, V. (GRIT), Segarra, A. (GRIT)
“The Impact of Cooperation on R&D, Innovation and Productivity: an Analysis of Spanish Manufacturing and Services Firms”
(Novembre 2013)

XREAP2013-09
Bahraoui, Z. (RFA); Bolancé, C. (RFA); Pérez-Marín, A. M. (RFA)
“Testing extreme value copulas to estimate the quantile”
(Novembre 2013)

2014

XREAP2014-01
Solé-Auró, A. (RFA), Alcañiz, M. (RFA)
“Are we living longer but less healthy? Trends in mortality and morbidity in Catalonia (Spain), 1994-2011”
(Gener 2014)
XREAP2014-02
Teixidó-Figueres, J. (GRIT), Duro, J. A. (GRIT)
“Spatial Polarization of the Ecological Footprint distribution”
(Febrer 2014)

XREAP2014-03
Cristobal-Cebolla, A.; Gil Lafuente, A. M. (RFA), Merigó Lindhal, J. M. (RFA)
“La importancia del control de los costes de la no-calidad en la empresa”
(Febrer 2014)

XREAP2014-04
Castañer, A. (CREB); Claramunt, M.M. (CREB)
“Optimal stop-loss reinsurance: a dependence analysis”
(Abril 2014)

XREAP2014-05
Di Paolo, A. (AQR-IREA); Matas, A. (GEAP); Raymond, J. Ll. (GEAP)
“Job accessibility, employment and job-education mismatch in the metropolitan area of Barcelona”
(Maig 2014)

XREAP2014-06
Di Paolo, A. (AQR-IREA); Mañé, F.
“Are we wasting our talent? Overqualification and overskilling among PhD graduates”
(Juny 2014)

XREAP2014-07
Segarra, A. (GRIT); Teruel, M. (GRIT); Bové, M. A. (GRIT)
“A territorial approach to R&D subsidies: Empirical evidence for Catalan firms”
(Setembre 2014)

XREAP2014-08
Ramos, R. (AQR-IREA); Sanromá, E. (IEB); Simón, H.
“Public-private sector wage differentials by type of contract: evidence from Spain”
(Octubre 2014)

XREAP2014-09
Bel, G. (GM-IREA); Bolancé, C. (Riskcenter-IREA); Guillén, M. (Riskcenter-IREA); Rosell, J. (GiM-IREA)
“The environmental effects of changing speed limits: a quantile regression approach”
(Desembre 2014)

2015

XREAP2015-01
Bolance, C. (Riskcenter-IREA); Bahraoui, Z. (Riskcenter-IREA); Alemany, R. (Riskcenter-IREA)
“Estimating extreme value cumulative distribution functions using bias-corrected kernel approaches”
(Gener 2015)

XREAP2015-02
Ramos, R. (AQR-IREA); Sanromá, E. (IEB); Simón, H.
“An analysis of wage differentials between full- and part-time workers in Spain”
(Agost 2015)

XREAP2015-03
Cappellari, L.; Di Paolo, A. (AQR-IREA)
“Bilingual Schooling and Earnings: Evidence from a Language-in-Education Reform”
(Setembre 2015)

XREAP2015-04
Álvarez-Albelo, C. D., Manresa, A. (CREB), Pigem-Vigo, M. (CREB)
“Growing through trade: The role of foreign growth and domestic tariffs”
(Novembre 2015)

XREAP2015-05
Caminal, R., Di Paolo, A. (AQR-IREA)
Your language or mine?
(Novembre 2015)
When one door closes: the impact of the hagwon curfew on the consumption of private tutoring in the Republic of Korea
(Novembre 2015)

2016

XREAP2016-01
Castañer, A. (CREB, XREAP); Claramunt, M. M. (CREB, XREAP); Tadeo, A.; Varea, J. (CREB, XREAP)
Modelització de la dependència del número de siniestres. Aplicació a Solvencia II
(Setembre 2016)

XREAP2016-02
García-Quevedo, J. (IEB, XREAP); Segarra-Blasco, A. (GRIT, XREAP); Teruel, M. (GRIT, XREAP)
Financial constraints and the failure of innovation projects
(Setembre 2016)

XREAP2016-03
Jové-Llopis, E. (GRIT, XREAP); Segarra-Blasco, A. (GRIT, XREAP)
What is the role of innovation strategies? Evidence from Spanish firms
(Setembre 2016)

XREAP2016-04
Albalate, D. (GiM-IREA, XREAP); Rosell, J. (GiM-IREA, XREAP)
Persistent and transient efficiency on the stochastic production and cost frontiers – an application to the motorway sector
(Octubre 2016)

XREAP2016-05
Jofre-Monseny, J. (IEB, XREAP); Silva, J. I.; Vázquez-Grenno, J. (IEB, XREAP)
Local labor market effects of public employment
(Novembre 2016)

XREAP2016-06
García-López, M. A. (IEB, XREAP); Hemet, C.; Viladecans-Marsal, E. (IEB, XREAP)
Next train to the polycentric city: The effect of railroads on subcenter formation
(Novembre 2016)