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Abstract

A method to estimate an extreme quantile that requires no distributional assumptions
is presented. The approach is based on transformed kernel estimation of the cumulative
distribution function (cdf). The proposed method consists of a double transformation
kernel estimation. We derive optimal bandwidth selection methods that have a direct
expression for the smoothing parameter. The bandwidth can accommodate to the given
quantile level. The procedure is useful for large data sets and improves quantile estimation
compared to other methods in heavy tailed distributions. Implementation is straightfor-
ward and R programs are available.

Keywords: kernel estimation, bandwidth selection, quantile, risk measures.

1 Introduction

Risk measures and their mathematical properties have been widely studied in the literature
(see, for instance, the books by McNeil et al. (2005) and Jorion (2007) or articles such as
Dhaene et al. (2006) among many others). Most of those contributions and applications in risk
management usually assume a parametric distribution for the loss random variable1. Deviations
from parametric hypothesis can be critical in the extremes and produce inaccurate results (see,
Kupiec, 1995). Krätschmer and Zähle (2011) investigated the error made even when the normal
approximation is plugged in a general distribution-invariant risk measure.

1Standard industry models as CreditRisk+ are parametric. See, Fan and Gu (2003), and references therein
for semiparametric models.
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Our approach is nonparametric as in Peng et al. (2012), Cai and Wang (2008) and Jones
and Zitikis (2007). We propose a method to estimate quantiles that is based on a nonparamet-
ric estimate of the cumulative distribution function with an optimal bandwidth at the desired
quantile level. Eling (2012) recently used a similar benchmark nonparametric fit to describe
claims severity distributions in property-liability insurance (see, Bolancé et al., 2012b, for de-
tails) but the choice of the smoothing parameter needs further analysis. Besides, Eling (2012)
was interested in the fit for the density of claims severty, not on risk measurement or quantiles2.
We present the nonparametric estimation approach and focus on the bandwidth choice. We
also carry out a simulation exercise.

A risk measure widely used to quantify the risk is the value-at-risk with level α. It is defined
as follows,

V aRα (X) = inf {x, FX (x) ≥ α} = F−1X (α) , (1)

where X is a random variable with probability distribution function (pdf) fX , and cumulative
distribution function (cdf) FX . Artzner et al. (1999) discussed other risk measures, but they
stated that expected shortfall is preferred in practice due to its better properties, although
value-at-risk is widely used in applications.

The V aRα is used both as an internal risk management tool and as a regulatory measure
of risk exposure to calculate capital adequacy requirements in financial and insurance institu-
tions. In this paper we propose a method to estimate the V aRα in extreme quantiles, based on
transformed kernel estimation (TKE) of the cdf of losses. The proposed method consists of a
double transformation kernel estimation (DTKE), and it works well for very extreme levels and
a large sample size. It also improves quantile estimation compared to existing methods. An
additional contribution is that we propose a simple expression for an optimal bandwidth pa-
rameter. Thus, we advocate that there is little advantage of assuming parametric distributions
when calculating value-at-risk for heavy tailed data, given that the nonparametric approach
implementation is very straightforward.

Some previous research has already studied nonparametric estimation of quantiles. On
the one hand Azzalini (1981) suggested to estimate the cdf and then to obtain the quantile
from its inverse function. On the other hand Harrell and Davis (1982) proposed an alternative
quantile estimator, based in a weighted sum of sample observations. Later, Sheather and
Marron (1990) analysed the existing kernel methods for quantile estimation and proposed a
smoothing parameter. None of those contributions, however, focused on highly skewed or
heavy tailed distribution, which most often appear in financial and insurance risk management.

2Eling (2012) worked with two empirical data sets. The first dataset is US indemnity losses and the second is
comprised of Danish fire losses. His work indicated that the transformation kernel (Bolancé et al., 2003) is the
best and second best approach when compared with the parametric distributions in terms of the log likelihood
value in his applications. The transformation kernel approach performed extremely well there and confirmed
the results presented by Bolancé et al. (2008a) for auto insurance.
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Recently, Swanepoel and Van Graan (2005) presented kernel estimation of a cdf using
nonparametric transformation, i.e. a simple form of transformed kernel estimation. Instead,
Bolancé et al. (2008b) used a parametric transformation, which provides good results in the esti-
mation of conditional tail expectation. Here, we propose an improved nonparametric procedure
to estimate the V aRα in finance and insurance applications and derive an optimal expression
for the bandwidth parameter.

2 Motivation and outline

Our motivation is found on the statistical assumptions underlying the random behaviour of
loss distributions. In practice, calculating V aRα requires to assume a particular stochastic
behaviour of losses. Assumptions have generally been based on three possible statistical princi-
ples: i) the empirical statistical distribution of the loss or some smoothed version, ii) assuming
that the loss follows a Normal or Student t distribution and iii) some other alternative para-
metric approximations. Sample size is a key factor to determine the method to estimate the
quantile. In order to use the empirical distribution function, a minimum sample size is re-
quired. The Normal approximation provides a straightforward expression for the most popular
risk measures, although the loss may be far from having a Normal shape or even a Student
t distribution. Alternatively, one should find a suitable heavy tailed parametric distribution
to which the loss data should fit (see, for example, McNeil et al., 2005; Jorion, 2007; Bolancé
et al., 2012b). Extreme value theory can be used to locate the tail of the distribution (see,
Reiss and Thomas, 1997; Hill, 1975; Guillén et al., 2011).

A principal difference between our transformed kernel estimation and the fit of a heavy tailed
parametric loss distribution is that we use sample information to estimate the parameters of a
initial parametric model and, later, we also use the sample information to correct this initial fit.
The proposed method works when losses have heavy tailed distributions, it is easy to implement
and it provides consistent results. It is very flexible, so it is comparable to the empirical
distribution approach. We can affirm that the method proposed in this work smooths the
shape of the empirical distribution and extrapolates its behaviour when dealing with extremes,
where data are very scarce or non existent.

The results of our simulation study show that our double transformed kernel estimation
method can be applied to risk measurement and is specially suitable when the sample size is
large. This is useful when basic parametric densities provide a poor fit in the tail. In the
transformed kernel approach, no parametric form is imposed on the loss distribution, but, most
importantly, this method avoids defining where the tail of the loss distribution starts in order
to apply extreme value theory.

When writing this article, we decided to summarize basic nonparametric concepts that
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appear quite frequently elsewhere3. We introduce kernel estimation notation to make the
presentation self-contained. In Section 3 we present nonparametric estimation of a pdf and a
cdf. We also describe nonparametric estimation of cdf in connection with estimation of value-
at-risk. Section 4 introduces transformation kernel estimation of a cdf and a new result on
its asymptotic properties. Double transformation kernel estimation of a cdf and the selection
of the smoothing parameter are studied in Section 5. Section 6 presents a simulation study
where we can confirm the properties of the methods proposed in the previous sections. The
most relevant conclusions and a discussion are given in the last section. Implementation tools
in R are available from the authors and detailed hands-on examples of transformation kernel
estimation can be found in Bolancé et al. (2012b).

3 Nonparametric estimation of a cumulative distribu-

tion function

Let X be a random variable which represents a loss amount; its cdf is FX . Let us assume that
Xi i = 1, ..., n denotes data observations from the loss random variable X. For instance, loss
data may also arise from historical simulation or they may have been generated in a Monte
Carlo analysis. A natural nonparametric method to estimate cdf is the empirical distribution,

F̂n(x) =
1

n

n∑
i=1

I(Xi ≤ x), (2)

where I(·) = 1 if condition between parentheses is true. Then, the empirical estimate of value-
at-risk is:

V aRα (X) = inf
{
x, F̂n (x) ≥ α

}
. (3)

Estimation of the empirical distribution is very simple, but it cannot extrapolate beyond
the maximum observed data point. This is especially troublesome if the sample is not too large,
and one may suspect that the probability of a loss larger than the maximum observed loss in
the data sample is not zero.

Classical kernel estimation (CKE) of cdf FX is obtained by integration of the classical kernel
estimation of its pdf fX . By means of a change of variable, the usual expression for the kernel

3Many recent contributions in insurance are based on nonparametric statistical methods. For instance, Lopez
(2012) provided a new nonparametric estimator of the joint distribution of two lifetimes for mortality analysis
and Kim (2010) studied the bias of the empirical distorsion risk measure estimate.
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estimator of a cdf is obtained:

F̂X(x) =
∫ x
−∞ f̂X(u)du =

∫ x
−∞

1
nb

∑n
i=1 k

(
u−Xi
b

)
du

= 1
n

∑n
i=1

∫ x−Xi
b

−∞ k (t) dt = 1
n

∑n
i=1K

(
x−Xi
b

)
,

(4)

where k(·) is a pdf, which is known as the kernel function. It is usually a symmetric pdf,
but this does not imply that the final estimate of FX is symmetric. Some examples of very
common kernel functions are the Epanechnikov and the Gaussian kernel (see, Silverman, 1986).
Parameter b is the bandwidth or the smoothing parameter. It controls the smoothness of the
cdf estimate. The larger b is, the smoother the resulting cdf. Function K(·) is the cdf of k(·).

The classical kernel estimation of a cdf as defined in (4) is not much different to the expres-
sion of the well-known empirical distribution in (2). Indeed, in (4) one should replace K

(
x−Xi
b

)
by I(Xi ≤ x) in order to obtain (2). The main difference between (2) and (4) is that the
empirical cdf only uses data below x to obtain the point estimate of FX(x), while the classical
kernel cdf estimator uses all the data above and below x. In other words, the empirical cdf
gives more weight to the observations that are smaller than x than it does to the observations
that are larger than x.

In practice, to estimate V aRα from F̂X (·), we use the Newton-Raphson method to solve
the equation:

F̂X (x) = α. (5)

Properties of kernel cdf estimator were analyzed by Reiss (1981) and Azzalini (1981). Both

point out that when n → ∞, the mean squared error (MSE) of F̂X (x) can be approximated
by:

E
{
F̂X (x)− FX (x)

}2

∼ FX(x)[1−FX(x)]
n

− fX (x) b
n

(
1−

∫ 1

−1K
2 (t) dt

)
+b4

(
1
2
f ′X (x)

∫
t2k (t) dt

)2
= FX(x)[1−FX(x)]

n
− u (x) + b4v (x) ,

(6)

where as in Azzalini (1981)

u (x) = fX (x)
b

n

(
1−

∫ 1

−1
K2 (t) dt

)
and

v (x) =

(
1

2
f ′X (x)

∫
t2k (t) dt

)2

.
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Expression (6) comes from a Taylor expansion of F̂X (x). The first two terms in (6) correspond
to the asymptotic variance and the third term is the squared asymptotic bias. If (6) is compared
to the MSE of the empirical distribution, which equals (FX (x) [1− FX (x)])/n, we conclude that
the kernel cdf estimator has less variance than the empirical distribution estimator, but it has
some bias which tends to zero if the sample size is large. Azzalini (1981) showed that the
properties of CKE of cdf are transferred to the quantile estimator.

The value for the smoothing parameter b that minimizes (6) is:

b∗x =

(
fX (x)

∫
K (t) [1−K (t)] dt(

f ′X (x)
∫
t2k (t) dt

)2
) 1

3

n−
1
3 . (7)

Azzalini (1981) showed that (7) is also optimal when calculating the quantiles by solving
(5). However, in practice, calculating b∗x is not simple because it depends on the true value of
fX(x). It is common to replace the theoretical value of fX(x) by the Normal pdf with zero
mean and scale parameter σ, which is estimated from the raw data. However, as our goal is to
estimate the quantile (i.e. the point x where the value of the cdf is F (x) = α), this particular
approach to estimating b∗x seems unstable, as it depends on how precise is the estimate of fX
in the tail.

An alternative to the smoothing parameter defined in (7) is to use a value for the bandwidth
that is asymptotically optimal for the entire domain of the cdf. So, we can estimate the optimal
smoothing parameter for the entire domain. One way is to adapt the method described in
Silverman (1986). We emphasize that this method starts from minimizing the mean integrated
squared error (MISE):

MISE
{
F̂X(x)

}
= E

{∫ [
FX(x)− F̂X(x)

]2
dx

}
.

The asymptotic value of MISE is known as A-MISE (asymptotic mean integrated squared
error). When integrating the asymptotic expression of mean squared error given in (6), it
follows that A-MISE is:

1
n

∫
FX(x) [1− FX(x)] dx− 1

n
b
∫
K (t) [1−K (t)] dt+ 1

4
b4
∫

[f ′X (x)]2 dx
(∫

t2k (t) dt
)2
. (8)

Minimizing (8) with respect to b, we find that the smoothing parameter which is asymptot-
ically optimal for all the domain of the cdf is:

b∗ =

( ∫
K (t) [1−K (t)] dt∫

[f ′X (x)]2 dx
(∫

t2k (t) dt
)2
) 1

3

n−
1
3 . (9)
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Silverman (1986)) suggests to approximate (9) and replace the terms that depend on the
theoretical density function by the value obtained when assuming that

∫
[f ′X (x)]2 dx can be

estimated assuming a Normal distribution with parameters (µ, σ). Using the Epanechnikov
kernel, the so called rule-of-thumb bandwidth is defined as:

b̂ = σ

(
180
√
π

7

) 1
3

n
1
3 = 3.572σXn

− 1
3 , (10)

where, in practice, we replace σX by a consistent estimator from the available loss data.
Since the objective of this paper is to estimate a quantile in the tail of the distribution, as

an alternative to (10) we can calculate the optimal smoothing parameter, so that more weight
is given to the accuracy of the estimate in the part of the domain near the quantile. We assume
that we estimate V aRα for a level α close to 1, and we analyze the possibility of using the
smoothing parameter based on the minimization of a weighted mean integrated squared error4.

Proposition 1 Let

WISE
{
F̂X(x)

}
= E

{∫ [
FX(x)− F̂X(x)

]2
x2dx

}
.

Similarly to A-MISE, we denote as A-WISE the asymptotic value of WISE, that is equal to:∫
FX(x) [1− FX(x)]x2dx

n
−
b
∫
fX (x)x2dx

∫
K (t) [1−K (t)] dt

n

+
1

4
b4
∫

[f ′X (x)]
2
x2dx

(∫
t2k (t) dt

)2

.

Minimizing the above expression with respect to the smoothing parameter b we find that the
value of the bandwidth that minimizes A-WISE is equal to:

b∗∗ =

(∫
fX (x)x2dx

∫
K (t) [1−K (t)] dt∫

[f ′X (x)]2 x2dx
(∫

t2k (t) dt
)2

) 1
3

n
1
3 . (11)

Proposition 2 In order to obtain a rule-of-thumb approximation of (11), we replace function-
als
∫
fX (x)x2dx and

∫
[f ′X (x)]2 x2dx by their corresponding values if we assume that fX is a

Normal pdf with scale parameter σ and k(·) is the Epanechnikov kernel:

b̂∗∗ = σ
5
3

(
8

3

) 1
3

n−
5
3 . (12)

4We assume that we are interested in the right tail, but a similar approach could be used for the left tail
changing signs. Usually we work with non-negative losses, which is the typical setting in risk management of
insurance claims.
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Many authors have addressed the bandwidth selection problem. Sarda (1993) and Bow-
man et al. (1998) analyzed the choice of the smoothing parameter based on minimizing cross-
validation function. All these methods are very much time-consuming and require rather
lengthy implementation processes. That is the reason why we believe that none of them has
been successful in practice. Altman and Léger (1995) discussed a plug-in method based on

an expression of A-MISE which includes an additional term in the Taylor expansion of F̂X(x),
but this leads to the need to estimate more than one functional expression and the results are
still not straightforward. We will return to this problem in the next section, where a double
transformation will guide the bandwidth choice.

As an alternative to kernel estimation of cdf, the kernel quantile estimator (KQE) is a
classical method to estimate the V aRα. Sheather and Marron (1990) reviewed different forms
of obtaining KQE and they showed that they were all asymptotically equivalent. In order
to compare the results with those obtained from the inverse of the kernel estimation of the
distribution function, we also included Sheather and Marron (1990) approach in our simulation
study. The kernel quantile estimator is:

KQ (α) =

1
nb

∑n
i=1K

(
i− 1

2
n
−α
b

)
X(i)

1
nb

∑n
i=1K

(
i− 1

2
n
−α
b

) . (13)

In (13) we could use the bandwidth proposed in Harrell and Davis (1982) using a Gaussian
kernel. So, the bandwidth would be:

b =

[
α (1− α)

n+ 1

] 1
2

. (14)

Sheather and Marron (1990) proposed an optimal smoothing parameter for (13), but it
involves great difficulty in calculations. These authors conducted a simulation exercise and
compared the MSE of (13) using the bandwidth they proposed and the bandwidth given by
(14). For quantiles close to 1, their results showed that the difference between the MSE of both
proposals is not too large. So, we later use the expression given in (14).

4 Transformed Kernel Estimation

Let T (·) be a concave transformation where Y = T (X) and Yi = T (Xi), i = 1 . . . n are
the transformed observed losses. Then the kernel estimator of the transformed cumulative
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distribution function is:

F̂Y (y) =
1

n

n∑
i=1

K

(
y − Yi
b

)
=

1

n

n∑
i=1

K

(
T (x)− T (Xi)

b

)
, (15)

The transformated kernel estimation (TKE) of FX (x) is:

F̂X (x) = F̂T (X)(T (x)).

In expression (15), b and K (·) have already been defined in the previous section on the classical
kernel estimation of the distribution function. In order to calculate V aRα we use the Newton-
Raphson method to solve the equation F̂T (X)(T (x)) = α and once the result is obtained, we
apply the inverse of the transformation.

To obtain the transformed kernel estimate, it is necessary to determine what transformation
to use. Several authors have analyzed the transformation kernel estimation of the density
function (see, Wand et al., 1991; Bolancé et al., 2003; Buch-Larsen et al., 2005; Pitt et al., 2012;
Ruppert and Cline, 1994)5. However, few studies analyzed the transformed kernel estimate of
the distribution function and the quantile (see, Swanepoel and Van Graan, 2005). In general,
transformations are classified into parametric and nonparametric and, in turn, they may or
may not correspond to a distribution function. The core objective of the transformation is that
the chosen distribution of the new variable can be estimated using the classical kernel.

The work in Buch-Larsen et al. (2005) proposed to transform the data with the cdf associated
with generalized Champernowne distribution. This is suitable for positive losses:

T (x) =
(x+ c)δ − cδ

(x+ c)δ + (M + c)δ − 2cδ
. (16)

If we analyze the properties of this distribution, we can conclude that it has a very flexible
shape. It is similar to a Lognormal in the low values and it tends to a Generalized Pareto in the
extreme values. The estimation of transformation parameters is performed using the maximum
likelihood method described in Buch-Larsen et al. (2005).

The transformed variable from a cdf follows a Uniform(0, 1) distribution. We know that
when the value of density is larger than 0 at the boundary, classical kernel estimation of pdf
does not integrate to 1. Thus, transformed kernel estimation of cdf cannot be used to estimate
V aRα when α is close to 1. To allow that the estimated pdf integrates to 1, Buch-Larsen et al.

5There are also some applied contributions in this area too (Guillen et al., 2007; Pinquet et al., 2001; Bolancé
et al., 2008b; Bolancé et al., 2008, 2010a; Buch-Kromann et al., 2011; Englund et al., 2008; Bolancé et al., 2010b)
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(2005) proposed using a boundary correction, that is:

min(1,(1−y)/b)∫
max(−1,−y/b)

K(u)du. (17)

Swanepoel and Van Graan (2005) proposed a transformed kernel estimation using a non-
parametric cdf transformation:

T (x) =
1

n

n∑
i=1

K

(
x−Xi

b0

)
, (18)

where b0 is the smoothing parameter for the nonparametric transformation. They also proposed
to use the same bandwidth in the transformation and in the final estimation in (15). Similarly
to (16), in (18) we also need to use the boundary correction in (17) to be able to calculate
V aRα when α is close to 1.

In Theorem 1 we analyze the effect of the transformation on the MSE of the transformation
kernel estimation of FX(x) and so, on the value of the estimated quantile.

Theorem 1 The MSE of the transformed kernel estimation of a cdf based on (15) is asymp-
totically equal to:

E
{
F̂T (X) (T (x))− FT (X) (T (x))

}2

= ET

{
F̂X (x)− FX (x)

}2

∼ FX(x)[1−FX(x)]
n

− 1
T ′(x)

fX (x) b
n

(
1−

∫ 1

−1K
2 (t) dt

)
+ 1
T ′(x)

(
1−

fX (x)

f ′
X

(x)

T ′(x)
T ′′(x)

)2 [
1
2
f ′X (x)

∫ 1

−1 t
2k (t) dt

]2
b4

= FX(x)[1−FX(x)]
n

− 1
T ′(x)

u (x) + 1
T ′(x)

(
1−

fX (x)

f ′
X

(x)

T ′(x)
T ′′(x)

)2

v (x) b4,

(19)

where u and v are the same as before (see, Azzalini, 1981).

Proof 1 Proof of Theorem 1 is in the Appendix.

The result in Theorem 1 shows that the two last terms in MSE of TKE are a weighted sum
of the two last terms in MSE of CKE.
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Minimizing expression (19) with respect to b we obtain:

bTx = T ′ (x)
1
3

1−
fX(x)
f ′X(x)

T ′(x)
T ′′(x)

− 2
3 (

u (x)

4v (x)

) 1
3

n−
1
3

= T ′ (x)
1
3

1−
fX(x)
f ′X(x)

T ′(x)
T ′′(x)

− 2
3

bClasx = bClasT (x),

where bClasx is the optimal bandwidth in classical kernel estimation of Fx (x) and bClasT (x) is the

same for FT (x) (T (x)). Replacing bTx in (19) we obtain the asymptotic optimal MSE:

FX (x) [1− FX(x)]

n
− T ′ (x)

2
3

1−
fX(x)
f ′X(x)

T ′(x)
T ′′(x)

− 2
3

5

v (x)
1
3

(
u (x)

4n

) 4
3

. (20)

For the classical kernel estimation of FX (x), Azzalini (1981) finds that the asymptotic
optimal MSE is:

FX (x) [1− FX(x)]

n
− 5

v (x)
1
3

(
u (x)

4n

) 4
3

.

Then the MSE of transformed kernel estimation in (20) is smaller than MSE of classical esti-
mation if:

T ′ (x)
2
3

1−
fX(x)
f ′X(x)

T ′(x)
T ′′(x)

− 2
3

> 1. (21)

In practice, the use of a suitable transformation reduces the variance at the expense of
increasing the bias of the estimation. In the simulation presented later, we analyze to what ex-
tent this correction implies a reduction in mean square error of the transformed kernel estimate
compared to the classical.

The optimal smoothing parameter to estimate the cdf using transformed kernel estimator
coincides with the optimal smoothing parameter for the classical approach on the transformed
variable. We can estimate the optimal smoothing parameter for the entire domain of the
function using (10) or (11) replacing σX by σY .

Moreover, we can approximate the optimal smoothing parameter in the quantile estimate
by replacing the X by Y in the expression of b∗x as defined in (7) and, conversely, fY (y) by
the value of the Normal density at point y. However, this approach provides a worse outcome
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than those expressed in (10) and (12) as the value of the Normal density at y is usually not
an accurate approximation of the true density at that point, in heavy tailed distributions and
high quantiles.

5 Double Transformed Kernel Estimation

The estimation that we describe in this section is based on the method proposed by Bolancé
et al. (2008a) in the context of density functions. Here the objective is to estimate the cdf and
the method is much simpler. We will also derive the corresponding quantile estimator.

In the expression of A-MISE given in (8), we can see that in order to obtain a smoothing
parameter that is asymptotically optimal, it is sufficient to minimize:

1

4
b4
∫

[f ′Y (y)]
2
dy

(∫
t2k (t) dt

)2

− 1

n
b

∫
K (t) [1−K (t)] dt,

where, given b and k(·), the value is minimum when functional
∫

[f ′Y (y)]2 dy is minimum. There-
fore, the proposed method is based on the transformation of the variable in order to achieve a
distribution that minimizes the previous expression.

Terrell (1990) showed that the density of a Beta (3, 3) distribution defined on the domain
[−1, 1] minimizes

∫
[f ′Y (y)]2 dy, in the set of all densities with known variance. Its pdf and cdf

are, respectively:

m (x) =
15

16

(
1− x2

)2
,−1 ≤ x ≤ 1,

M (x) =
3

16
x5 − 5

8
x3 +

15

16
x+

1

2
. (22)

The double transformation kernel estimation method requires an initial transformation of
the data T (Xi) = Zi, where we get a transformed variable distribution that is close to a
Uniform(0, 1). Afterwards, the data are transformed again using the inverse of the distribution
function of a Beta (3, 3), M−1 (Zi) = Yi. The resulting variable once the double transformation
has been made, has a distribution that is close to a Beta (3, 3) (see, Bolancé, 2010). The double
transformation kernel estimator (DTKE) is:

F̂X (x) =
1

n

n∑
i=1

K

(
M−1 (T (x))−M−1 (T (Xi))

b

)
=

1

n

n∑
i=1

K

(
y − Yi
b

)
. (23)
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The smoothing parameter b can be calculated from expression (9) knowing that for the
Beta (3, 3) distribution in (22)

∫
[f ′Y (y)]2 dy = 15/7. So, using an Epanechnikov kernel, we

obtain a simple smoothing parameter as follows:

b̂∗ = 3
1
3n−

1
3 . (24)

We can also compute the smoothing parameter using expression (11). If we substitute again
fY (y) by density m (y) from a Beta (3, 3) as defined in (22), we obtain:

b̂∗∗ = (9/7)
1
3 n−

1
3 . (25)

However, the distribution of the transformed variables has been established, with the pdf
and the cdf defined in (22). It is crucial here, that this method provides an accurate way to
obtain an estimation of the optimal value of the smoothing parameter precisely at the point
where we wish to estimate the V aRα. From expression (7), it follows that:

bClasT (x) =

(
u (T (x))

4v (T (x))

) 1
3

n−
1
3
, (26)

where

u (T (x)) = m (y)

(
1−

∫ 1

−1
K2 (t) dt

)
and

v (T (x)) =

[
1

2
m′ (y)

∫ 1

−1
t2k (t) dt

]2
.

For example, if we calculate m (y) and m′ (y) at the 99% percentile of a Beta (3, 3) distri-
bution, we find that

m (0.788 72) =
15

16

(
1− 0.788 722

)2
= 0.133 90

and

m′ (0.788 72) =

(
15

4
0.788 72

(
0.788 722 − 1

))2

= 1. 249 4.

Then:

bClasy=0.78872 =

(
0.133 90 9

35[
1
5

]2
1. 249 4

) 1
3

n−
1
3 = 0.883 21n−

1
3

Following Bolancé et al. (2008a), we propose to implement double transformed kernel esti-
mation of cdf as follows. First, use a transformation based on the generalized Champernowne
distribution in (16) and then, use a Beta transformation. The quantile estimator is obtained
from the estimated cdf.
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Table 1: Distributions in the simulation study

Distribution FX(x) Parameters
Weibull 1− e−xγ γ = 1.5

LogNormal
∫ log x

−∞
1√
2πσ2

e−
(t−µ)2

2σ2 dt (µ, σ = (0, 0.5)

Mixture Lognormal p
∫ log x

−∞
1√
2πσ2

e−
(t−µ)2

2σ2 dt (p, µ, σ, λ, ρ, c) = (0.7, 0, 1, 1, 1,−1)

-Pareto +(1− p)
(

1−
(
x−c
λ

)−ρ)
(p, µ, σ, λ, ρ, c) = (0.3, 0, 1, 1, 1,−1)

6 Simulation Study

We summarize the results of a simulation study. We compare the MSE for estimating V aRα of
our proposed double transformed kernel estimation (DTKE), the empirical estimation (Emp),
classical kernel estimation (CKE), kernel quantile estimation (KQE) and a transformed kernel
estimation (TKE) using a transformation that is a cdf, namely the Champernowne cdf proposed
in Buch-Larsen et al. (2005)6.

We generated 2, 000 samples of size n = 500 and 2, 000 samples of size n = 5, 000 from each
distribution in Table 1. We selected four distributions with positive skewness and different tail
shapes: Lognormal, Weibull and two mixtures of Lognormal-Pareto7.

For each sample of size n = 500 we estimated the V aRα, with α = 0.95 and α = 0.995.
When the sample size is n = 5, 000, in addition, we estimated V aRα with α = 0.999.

Using the 2, 000 replication estimates we estimated MSE for each method. To calculate
MSE we used the theoretical value of V aRα in Table 2. Results shown in Table 3 and Table
4 are the ratio between MSE of the different smoothing methods (KQE, CKE, TKE, DTKE)
and the MSE of the empirical method (Emp). Moreover, sub-index w indicates that we used
bandwidth based on asymptotic minimization of WISE and sub-index x indicates that we used
a smoothing parameter based on minimization of MSE for the corresponding α level.

In Table 3 we present the results for the Weibull and the Lognormal distributions. A value
smaller than one indicates that the mean squared error is smaller than that of the empirical cdf

6We also studied the transformed kernel estimation of cdf proposed in Swanepoel and Van Graan (2005), but
the results are worse than those obtained with the method of Buch-Larsen et al. (2005) and we do not include
them in the tables with the rest of the simulation results. Moreover, we also simulated the TKE proposed in
Bolancé et al. (2003), adapted to cdf estimation. There, a concave transformation is used that is not a cdf. We
found that this method does not perform well for extreme quantiles and, therefore, we do not show these results
in the summary tables.

7We used the same parameters as in Bolancé et al. (2008a).
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Table 2: True V aRα in the simulated distributions

Distribution α = 0.95 α = 0.995 α = 0.999
Weibull 2.0781 3.0392 3.6271

Lognormal 2.2760 3.6252 4.6885
Mixture Lognormal-Paretop=0.7 7.5744 59.1892 299.0013
Mixture Lognormal-Paretop=0.3 13.4079 139.0034 699.0001

method. These results indicate that, when the true distribution does not have a heavy tail, i.e.
Weibull or Lognormal, KQE and CKE provide good results and they are better than empirical
cdf approach for all values of α. This improvement is larger when the sample size increases and
α increases to 1.

In Table 4 we show the results of the ratio of MSE, for the two mixture Lognormal-Pareto
distributions. These results show the advantages of kernel and transformed kernel estimation
when the distribution has heavy tail. The results in Table 4 indicate that when the distribution
has a very heavy tail the KQE and CKE do not outperform empirical cdf estimation approach
(Emp), when α = 0.995 and α = 0.999, with both sample sizes n = 500 and n = 5, 000.

The results in Table 4 show that the DTKE method improves the empirical cdf method,
specially for a large sample size and an extreme quantile. For example, for a 70% Lognormal -
30% Pareto, and sample size n = 5, 000, DTKE reduces the MSE of Emp in the estimation of
the V aR0.999 by 46%, i.e. the ratio between the MSE of DTKE and the MSE of Emp method
is 0.54. We also see that DTKE reduces the MSE for the estimation of V aR0.995 by 17%
compared to the empirical method. For a 70% Lognormal - 30%, the reduction is 44% and
12%, respectively for α = 0.999 and α = 0.995. It is important to note that our proposal allows
to calculate the asymptotically optimal bandwidth bClasT (x) in expression (26) without assuming

a value for T (x), given that we can calculate this exactly from the Beta (3, 3) distribution in
expression (22). Finally, the results in the Appendix show that the DTKE method reduces
the variance of Emp and, in some cases, increases the bias. However, the variance reduction
compensates the increase of the bias and the MSE decreases.

Moreover, we see that the results of the transformed kernel estimation with boundary cor-
rection (TKE) cannot be used when estimating extreme quantiles. As the ratios are much above
1, we conclude that with this estimation method we could underestimate risk due to the large
error. In Table 4, we can see that when sample size is n = 500, TKE improves the empirical
cdf methods about 35% to 50% in terms of the amelioration of the MSE, but for n = 5, 000
results for TKE are much worse. In the Appendix, we show details on the bias results for a
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Table 3: Results for Weibull and Lognormal

n=500 n=5000

Weibull

Method α = 0.95 α = 0.995 α = 0.95 α = 0.995 α = 0.999

Emp 1 1 1 1 1
KQE 0.89 0.87 0.97 0.90 0.81

CKEw 0.89 0.94 0.97 0.93 0.85
CKEx 0.88 0.87 0.96 0.89 0.76
TKEw 0.75 10.31 0.90 19.60 28.08

DTKEw 0.95 2.15 0.98 1.29 1.42
DTKEx 0.92 1.25 0.97 0.98 0.89

Lognormal

α = 0.95 α = 0.995 α = 0.95 α = 0.995 α = 0.999

Emp 1 1 1 1 1
KQE 0.91 0.98 0.97 0.91 0.84

CKEw 0.92 0.98 0.97 0.94 0.93
CKEx 0.90 0.94 0.96 0.92 0.83
TKEw 0.65 8.90 0.87 24.76 24.31

DTKEw 0.94 2.07 0.96 1.22 1.25
DTKEx 0.92 1.24 0.95 0.97 0.83

16



Table 4: Results for mixture of Lognormal-Pareto

n=500 n=5000

70% Lognormal-30% Pareto

Method α = 0.95 α = 0.995 α = 0.95 α = 0.995 α = 0.999

Emp 1 1 1 1 1
KQE 1.03 294.29 0.97 1.06 647.32

CKEw 0.89 1.00 0.98 0.99 1.00
CKEx 0.90 1.00 0.98 0.99 1.00
TKEw 0.59 0.53 0.89 10.94 1.40

DTKEw 0.98 1.21 0.97 0.88 0.90
DTKEx 0.95 0.79 0.96 0.83 0.54

30% Lognormal-70% Pareto

α = 0.95 α = 0.995 α = 0.95 α = 0.995 α = 0.999

Emp 1 1 1 1 1
KQE 1.04 52.49 0.96 1.04 599.67

CKEw 0.91 1.00 0.98 1.00 1.00
CKEx 0.93 1.00 0.99 1.00 1.00
TKEw 0.49 0.65 0.86 12.04 1.58

DTKEw 0.89 1.90 0.93 0.98 1.07
DTKEx 0.87 1.12 0.93 0.88 0.66

closer inspection. There we can see that the TKE with boundary correction clearly underesti-
mates the V aRα. Therefore, we conclude that TKE is an unreliable and dangerous estimation
procedure for extreme quantiles in risk management.

According to the simulation results and our theoretical approximations, we recommend to
use a double transformation kernel estimation approximation with an optimal bandwidth to
estimate V aRα, for large databases and loss distributions that are heavy tailed.

An extension of this simulation study is reported in the Appendix. In order to analyze the
sensibility of our method, we obtained additional simulation results by changing the theoretical
parameters of the distribution in Table 1. The new distributions and their corresponding true
V aRα with the subsequent simulation results are shown in the Appendix. The new parameters
cover a wide range of possible distributional tails. After carefully examining the results, we
confirm the same conclusions mentioned before.
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7 Conclusions

We have presented a method to estimate quantiles that is suitable when the loss is a random
variable that is heavy tailed. The proposed double transformation kernel estimation does not
depend on a parametric assumption for the random variable. Asymptotic properties have been
proved, showing that when estimating extreme quantiles, the sample size needs to be large.

The proposed method is easily implemented and fast because the optimal smoothing pa-
rameter calculation is direct. Moreover, the proposed method is especially useful in many risk
measurement settings because it does not require statistical distribution assumptions and can
handle heavy tailed random variables. This is the case when analyzing some operational risk
situations (see, Bolancé et al., 2012a) or in the analysis of severity distributions.

Our research provides a tractable nonparametric method that can be extended to other risk
measures and can be useful to avoid restrictive statistical hypothesis.

Acknowledgements

We thank the Spanish Ministry of Science / FEDER support ECO2010-21787-C03-01. We also
thank members and affiliates of Riskcenter at the University of Barcelona. We acknowledge
Prof. Jens P. Nielsen for many fruitful discussions about the contents of this article. Montserrat
Guillén thanks support from ICREA-Academia.

References

Altman, N., Léger, C., 1995. Bandwidth selection for kernel distribution function estimation.
Journal of Statistical Planning and Inference 46, 195–214.

Artzner, P., Delbaen, F., Eber, J., Heath, D., 1999. Coherent measures of risk. Mathematical
Finance 9, 203–228.

Azzalini, A., 1981. A note on the estimation of a distribution function and quantiles by a kernel
method. Biometrika 68, 326–328.
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Ruppert, D. R., Cline, D. B. H., 1994. Bias reduction in kernel density estimation by smoothed
empirical transformation. Annals of Statistics 22, 185–210.

Sarda, P., 1993. Smoothing parameter selection for smooth distribution functions. Journal of
Statistical Planning and Inference 35, 65–75.

Sheather, S., Marron, J., 1990. Kernel quantile estimators. Journal of the American Statistical
Association 85, 410–416.

Silverman, B., 1986. Density Estimation for Statistics and Data Analysis. Chapman &
Hall/CRC Finance Series, London.

Swanepoel, J., Van Graan, F., 2005. A new kernel distribution function estimator based on a
nonparametric transformation of the data. Scandinavian Journal of Statistics 32, 551–562.

Terrell, G., 1990. The maximal smoothing principle indensity estimation. Journal of the Amer-
ican Statistical Association 85, 270–277.

Wand, P., Marron, J., Ruppert, D., 1991. Transformations in density estimation. Journal of
the American Statistical Association 86, 343–361.

21



Appendix

Proof 1 Proof of Theorem 1:

E
{
F̂Y (y)− FY (y)

}2

∼ FY (y) [1− FY (y)]

n
− fY (y)

b

n

(
1−

∫ 1

−1
K2 (t) dt

)
+

[
1

2
f ′Y (y)

∫ 1

−1
t2k (t) dt

]2
b4

=
FY (T (x)) [1− FY (T (x))]

n
− fX (x)

T ′ (x)

b

n

(
1−

∫ 1

−1
K2 (t) dt

)
+

[
1

2

(
fX (x)

T ′ (x)

)′ ∫ 1

−1
t2k (t) dt

]2
b4

=
FX (x) [1− FX(x)]

n
− 1

T ′ (x)
fX (x)

b

n

(
1−

∫ 1

−1
K2 (t) dt

)
+

[
1

2

f ′X (x)T ′ (x)− fX (x)T ′′ (x)

(T ′ (x))2

∫ 1

−1
u2k (t) dt

]2
b4

=
FX (x) [1− FX(x)]

n
− 1

T ′ (x)
fX (x)

b

n

(
1−

∫ 1

−1
K2 (t) dt

)
+

[
1

2
f ′X (x)

[
1

T ′ (x)
− fX (x)T ′′ (x)

f ′X (x) (T ′ (x))2

] ∫ 1

−1
t2k (t) dt

]2
b4.
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Table 5: Bias results mixture Lognormal-Pareto

n=500 n=5000

70% Lognormal-30% Pareto

Method α = 0.95 α = 0.995 α = 0.95 α = 0.995 α = 0.999

Emp 0.236 14.667 0.019 3.118 76.832
KQE 0.361 152.058 0.027 4.831 571.196

CKEw 0.130 14.671 0.009 2.880 76.568
CKEx 0.129 14.671 0.008 2.855 76.408
TKEw 0.031 -49.726 0.019 -43.516 -283.102

DTKEw 0.452 30.328 0.083 4.263 121.501
DTKEx 0.418 20.319 0.075 3.208 70.106

30% Lognormal-70% Pareto

Method α = 0.95 α = 0.995 α = 0.95 α = 0.995 α = 0.999

Emp 0.515 32.376 0.046 5.401 187.426
KQE 0.882 263.327 0.072 9.304 1143.475

CKEw 0.257 32.379 0.022 5.031 187.030
CKEx 0.278 32.378 0.021 5.047 186.883
TKEw -0.365 -122.615 0.007 -107.893 -667.352

DTKEw 0.855 96.517 0.158 12.144 306.070
DTKEx 0.792 60.718 0.145 8.081 177.801
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Table 6: Standard deviation results mixture Lognormal-Pareto

n=500 n=5000

70% Lognormal-30% Pareto

Method α = 0.95 α = 0.995 α = 0.95 α = 0.995 α = 0.999

Emp 1.147 66.591 0.337 12.785 226.987
KQE 1.135 1159.806 0.332 12.692 6070.150

CKEw 1.100 66.589 0.334 12.775 226.985
CKEx 1.106 66.588 0.335 12.773 226.983
TKEw 0.900 1.120 0.318 0.653 0.665

DTKEw 1.065 68.486 0.322 11.566 192.007
DTKEx 1.063 56.932 0.323 11.580 161.804

30% Lognormal-70% Pareto

Method α = 0.95 α = 0.995 α = 0.95 α = 0.995 α = 0.999

Emp 2.889 148.576 0.834 30.624 495.938
KQE 2.854 1069.727 0.817 30.324 12932.464

CKEw 2.786 148.574 0.828 30.613 495.937
CKEx 2.815 148.574 0.829 30.615 495.937
TKEw 2.016 2.543 0.775 1.842 1.885

DTKEw 2.629 186.024 0.792 28.233 456.538
DTKEx 2.626 149.128 0.793 27.959 390.843

Table 7: New scenarios for parameter values in the extended simulation study for sensibility
analysis

Distribution FX(x) Parameters
Smaller Larger

Weibull 1− e−xγ γ = 0.75 γ = 3

LogNormal
∫ log x

−∞
1√
2πσ2

e−
(t−µ)2

2σ2 dt (µ, σ) = (0, 0.25) (µ, σ) = (0, 1)

Mixture Lognormal p
∫ log x

−∞
1√
2πσ2

e−
(t−µ)2

2σ2 dt (p, ρ) = (0.7, 0.9) (p, ρ) = (0.7, 1.1)

-Pareto +(1− p)
(

1−
(
x−c
λ

)−ρ)
(p, ρ) = (0.3, 0.9) (p, ρ) = (0.3, 1.1)

The remaining parameters are those already shown in Table 1.
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Table 8: True V aRα in the simulated distributions. Parameter scenario with values smaller
than in Table 1)

Distribution α = 0.95 α = 0.995 α = 0.999
Weibull 4.3185 9.2367 13.1558

Lognormal 1.5086 1.9040 2.1653
Mixture Lognormal-Paretop=0.710 8.6258 93.6051 564.4016
Mixture Lognormal-Paretop=0.310 18.0137 241.4306 1448.5061

Table 9: True V aRα in the simulated distributions. Parameter scenario with values larger than
in Table 1)

Distribution α = 0.95 α = 0.995 α = 0.999
Weibull 1.4416 1.7433 1.9045

Lognormal 5.1802 13.1422 21.9821
Mixture Lognormal-Paretop=0.710 6.8606 40.9029 177.6320
Mixture Lognormal-Paretop=0.310 10.5928 88.3539 384.8806

Table 10: Results for Weibull and Lognormal. Parameter scenario with values smaller than in
Table 1)

n=500 n=5000

Weibull

Method a=0.95 a=0.995 a=0.95 a=0.995 a=0.999

Emp 1 1 1 1 1
KQE 0.91 0.97 0.97 0.91 0.84

CKEw 0.92 0.99 0.98 0.95 0.93
CKEx 0.92 0.98 0.98 0.94 0.88
TKEw 0.78 7.40 0.90 10.45 17.17

DTKEw 1.02 2.92 1.00 1.48 1.62
DTKEx 0.98 1.55 0.99 1.05 0.95

Lognormal

a=0.95 a=0.995 a=0.95 a=0.995 a=0.999

Emp 1 1 1 1 1
KQE 0.90 0.86 0.97 0.91 0.81

CKEw 0.91 0.97 0.97 0.94 0.91
CKEx 0.88 0.85 0.95 0.89 0.76
TKEw 0.68 10.83 0.87 27.39 31.13

DTKEw 0.96 1.91 0.96 1.20 1.23
DTKEx 0.94 1.17 0.95 0.96 0.82
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Table 11: Results for Weibull and Lognormal. Parameter scenario with values larger than in
Table 1)

n=500 n=5000

Weibull

Method a=0.95 a=0.995 a=0.95 a=0.995 a=0.999

Emp 1 1 1 1 1
KQE 0.90 0.85 0.97 0.90 0.80

CKEw 0.91 0.91 0.97 0.92 0.83
CKEx 0.88 0.80 0.96 0.87 0.73
TKEw 0.79 8.08 0.91 1.92 16.36

DTKEw 0.98 2.21 0.99 1.37 1.40
DTKEx 0.95 1.26 0.98 1.00 0.88

Lognormal

a=0.95 a=0.995 a=0.95 a=0.995 a=0.999

Emp 1 1 1 1 1
KQE 0.93 1.13 0.97 0.93 0.93

CKEw 0.90 0.99 0.97 0.95 0.97
CKEx 0.90 0.99 0.98 0.95 0.95
TKEw 0.65 5.66 0.87 20.23 15.01

DTKEw 1.00 2.41 0.97 1.27 1.30
DTKEx 0.97 1.37 0.96 0.99 0.84
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Table 12: Results for mixture of Lognormal-Pareto. Parameter scenario with values smaller
than in Table 1))

n=500 n=5000
70% Lognormal-30% Pareto

Method a=0.95 a=0.995 a=0.95 a=0.995 a=0.999

Emp 1 1 1 1 1
KQE 1.09 4235.00 0.97 1.10 44063.73

CKEw 0.91 1.00 0.98 0.99 1.00
CKEx 0.92 1.00 0.98 1.00 1.00
TKEw 0.47 0.32 0.88 11.54 1.28

DTKEw 0.94 1.51 0.96 0.88 1.00
DTKEx 0.92 0.74 0.96 0.83 0.78

30% Lognormal-70% Pareto

a=0.95 a=0.995 a=0.95 a=0.995 a=0.999

Emp 1 1 1 1 1
KQE 1.18 1143629.90 0.98 1.05 2460.04

CKEw 0.92 1.00 0.98 1.00 1.00
CKEx 0.94 1.00 0.98 1.00 1.00
TKEw 0.51 0.23 0.85 9.76 1.04

DTKEw 0.90 1.02 0.94 0.97 1.36
DTKEx 0.89 0.57 0.94 0.85 0.72
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Table 13: Results for mixture of Lognormal-Pareto. Parameter scenario with values larger than
in Table 1)

n=500 n=5000
70% Lognormal-30% Pareto

Method a=0.95 a=0.995 a=0.95 a=0.995 a=0.999

Emp 1 1 1 1 1
KQE 1.00 272.13 0.97 1.04 911.01

CKEw 0.91 1.00 0.98 0.99 1.00
CKEx 0.91 1.00 0.98 0.99 1.00
TKEw 0.68 0.60 0.88 11.71 2.17

DTKEw 0.99 0.95 0.96 0.88 1.00
DTKEx 0.97 0.70 0.95 0.84 0.63

30% Lognormal-70% Pareto

a=0.95 a=0.995 a=0.95 a=0.995 a=0.999

Emp 1 1 1 1 1
KQE 1.04 24357.97 0.97 1.00 95.70

CKEw 0.92 1.00 0.98 0.99 1.00
CKEx 0.93 1.00 0.98 0.99 1.00
TKEw 0.61 0.57 0.87 11.47 1.88

DTKEw 0.93 1.06 0.95 0.93 0.99
DTKEx 0.91 0.70 0.95 0.85 0.67
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